
task (correct, error, inserted error, and corrected
error) to allow typists to distinguish sources of errors
and correct responses and, therefore, provide a
stronger test of illusions of authorship. We asked 24
skilled typists (WPM = 70.7 T 16.4) to type 600
words, each of which was followed by a four-
alternative explicit report screen. Typists typed
91.8% of the words correctly. Mean interkeystroke
intervals, plotted in Fig. 3A, show post-error slow-
ing for incorrect responses (F1,138 = 117.7, p < 0.01)
and corrected errors (F1,138 = 120.0, p < 0.01), but
not for inserted errors (F < 1.0), indicating that
inner-loop detection distinguishes between actual
errors and correct responses.

Explicit detection probabilities, plotted in Fig.
3B, show good discrimination between correct
and error responses. For correct responses, typists
said “correct”more than “error” [t(23) = 97.29,
p < 0.01]; for error responses, typists said “error”
more than “correct” [t(23) = 8.22, p < 0.01]. Typ-
ists distinguished actual errors from inserted errors
well, avoiding an illusion of authorship. They
said “error”more than “inserted” for actual errors
[t(23) = 7.06, p < 0.01] and “inserted”more than
“error” for inserted errors [t(23) = 14.75, p <
0.01]. However, typists showed a strong illusion
of authorship with corrected errors. They were
just as likely to call them correct responses as
corrected errors [t(23) = 1.38].

The post-error slowing and post-trial report
data show a dissociation between inner- and outer-
loop error detection.We assessed the dissociation
further by comparing post-error slowing on trials
in which typists did and did not experience
illusions of authorship (21). The pattern of post-
error slowing was the same for both sets of trials
(fig. S6), suggesting that the pattern in Fig. 3A is
representative of all trials.

The three experiments found strong dissocia-
tions between explicit error reports and post-error
slowing. These dissociations are consistent with
the hierarchical error-detectionmechanism that we
proposed, with an outer loop that mediates ex-
plicit reports and an inner loop that mediates post-
error slowing. This nested-loop description of error
detection is consistent with hierarchical models
of cognitive control in typewriting (9, 10, 15–17)
and with models of hierarchical control in other
complex tasks (2, 8, 22). Speaking, playingmusic,
and navigating through space may all involve
inner loops that take care of the details of per-
formance (e.g., uttering phonemes, playing notes,
and walking) and outer loops that ensure that in-
tentions are fulfilled (e.g., messages communi-
cated, songs performed, and destinations reached).
Hierarchical control may be prevalent in highly
skilled performers who have had enough practice
to develop an autonomous inner loop. Previous
studies of error detection in simple tasks may
describe inner-loop processing. The novel con-
tribution of our research is to dissociate the outer
loop from the inner loop.

The three experiments demonstrate cogni-
tive illusions of authorship in skilled typewriting
(11–14). Typists readily take credit for correct
output on the screen, interpreting corrected errors
as their own correct responses. They take the
blame for inserted errors, as in the first and sec-
ond experiments, but they also blame the com-
puter, as in the third experiment. These illusions
are consistent with the hierarchical model of error
detection, with the outer loop assigning credit
and blame and the inner loop doing the work of
typing (10, 17). Thus, illusions of authorship
may be a hallmark of hierarchical control systems
(2, 11, 22, 23).
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Evidence for a Collective Intelligence
Factor in the Performance of
Human Groups
Anita Williams Woolley,1* Christopher F. Chabris,2,3 Alex Pentland,3,4
Nada Hashmi,3,5 Thomas W. Malone3,5

Psychologists have repeatedly shown that a single statistical factor—often called “general
intelligence”—emerges from the correlations among people’s performance on a wide variety of cognitive
tasks. But no one has systematically examined whether a similar kind of “collective intelligence” exists for
groups of people. In two studies with 699 people, working in groups of two to five, we find converging
evidence of a general collective intelligence factor that explains a group’s performance on a wide variety
of tasks. This “c factor” is not strongly correlated with the average or maximum individual intelligence
of group members but is correlated with the average social sensitivity of group members, the equality in
distribution of conversational turn-taking, and the proportion of females in the group.

Asresearch, management, and many other
kinds of tasks are increasingly accom-
plished by groups—working both face-

to-face and virtually (1–3)—it is becoming ever
more important to understand the determinants of
group performance. Over the past century,

psychologists made considerable progress in
defining and systematically measuring intelli-
gence in individuals (4). We have used the sta-
tistical approach they developed for individual
intelligence to systematically measure the intelli-
gence of groups. Even though social psycholo-

gists and others have studied for decades how
well groups perform specific tasks (5, 6), they have
not attempted to measure group intelligence in the
same way individual intelligence is measured—
by assessing howwell a single group can perform
a wide range of different tasks and using that
information to predict how that same group will
perform other tasks in the future. The goal of the
research reported here was to test the hypothesis
that groups, like individuals, do have character-
istic levels of intelligence, which can bemeasured
and used to predict the groups’ performance on a
wide variety of tasks.

Although controversy has surrounded it, the
concept ofmeasurable human intelligence is based
on a fact that is still as remarkable as it was to
Spearman when he first documented it in 1904
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(7): People who dowell on onemental task tend to
do well on most others, despite large variations in
the tests’ contents and methods of administration
(4). In principle, performance on cognitive tasks
could be largely uncorrelated, as one might expect
if each relied on a specific set of capacities that
was not used by other tasks (8). It could even be
negatively correlated, if practicing to improve one
task caused neglect of others (9). The empirical
fact of general cognitive ability as first demon-
strated by Spearman is now, arguably, the most
replicated result in all of psychology (4).

Evidence of general intelligence comes from
the observation that the average correlation among
individuals’ performance scores on a relatively
diverse set of cognitive tasks is positive, the first
factor extracted in a factor analysis of these scores
generally accounts for 30 to 50% of the variance,
and subsequent factors extracted account for
substantially less variance. This first factor extracted
in an analysis of individual intelligence tests is
referred to as general cognitive ability, or g, and it
is the main factor that intelligence tests measure.
What makes intelligence tests of substantial prac-
tical (not just theoretical) importance is that in-
telligence can be measured in an hour or less,
and is a reliable predictor of a very wide range
of important life outcomes over a long span of
time, including grades in school, success inmany
occupations, and even life expectancy (4).

By analogy with individual intelligence, we
define a group’s collective intelligence (c) as the
general ability of the group to perform a wide
variety of tasks. Empirically, collective intelligence
is the inference one draws when the ability of a
group to perform one task is correlated with that
group’s ability to perform a wide range of other
tasks. This kind of collective intelligence is a prop-
erty of the group itself, not just the individuals in it.
Unlike previous work that examined the effect on
group performance of the average intelligence of
individual groupmembers (10), one of our goals is
to determine whether the collective intelligence of
the group as a whole has predictive power above
and beyond what can be explained by knowing
the abilities of the individual group members.

The first question we examined was whether
collective intelligence—in this sense—even exists.
Is there a single factor for groups, a c factor, that
functions in the same way for groups as general
intelligence does for individuals? Or does group
performance, instead, have some other correla-
tional structure, such as several equally important
but independent factors, as is typically found in
research on individual personality (11)?

To answer this question, we randomly as-
signed individuals to groups and asked them to
perform a variety of different tasks (12). In Study
1, 40 three-person groups worked together for up
to 5 hours on a diverse set of simple group tasks
plus a more complex criterion task. To guide our
task sampling, we drew tasks from all quadrants
of the McGrath Task Circumplex (6, 12), a well-
established taxonomy of group tasks based on the
coordination processes they require. Tasks in-
cluded solving visual puzzles, brainstorming,
making collective moral judgments, and negoti-
ating over limited resources. At the beginning of
each session, we measured team members’ indi-
vidual intelligence. And, as a criterion task at the
end of each session, each group played checkers
against a standardized computer opponent.

The results support the hypothesis that a
general collective intelligence factor (c) exists in
groups. First, the average inter-item correlation
for group scores on different tasks is positive (r =
0.28) (Table 1). Next, factor analysis of team
scores yielded one factor with an initial eigen-
value accounting for more than 43% of the
variance (in the middle of the 30 to 50% range
typical in individual intelligence tests), whereas
the next factor accounted for only 18%. Confir-
matory factor analysis supported the fit of a
single latent factor model with the data [c2 =
1.66, P = 0.89, df = 5; comparative fit index
(CFI) =.99, root mean square error of approxi-
mation (RMSEA) = 0.01]. Furthermore, when
the factor loadings for different tasks on the first
general factor are used to calculate a c score for
each group, this score strongly predicts perform-
ance on the criterion task (r = 0.52, P = 0.01).
Finally, the average and maximum intelligence

scores of individual group members are not
significantly correlated with c [r = 0.19, not
significant (ns); r = 0.27, ns, respectively] and
not predictive of criterion task performance (r =
0.18, ns; r = 0.13, ns, respectively). In a regres-
sion using both individual intelligence and c to
predict performance on the criterion task, c has
a significant effect (b = 0.51, P = 0.001), but
average individual intelligence (b = 0.08, ns) and
maximum individual intelligence (b =.01, ns) do
not (Fig. 1).

In Study 2, we used 152 groups ranging from
two to five members. Our goal was to replicate
these findings in groups of different sizes, using a
broader sample of tasks and an alternative mea-
sure of individual intelligence. As expected, this
study replicated the findings of Study 1, yielding
a first factor explaining 44% of the variance and a
second factor explaining only 20%. In addition, a
confirmatory factor analysis suggests an excel-
lent fit of the single-factor model with the data
(c2 = 5.85, P = 0.32, df = 5; CFI = 0.98, NFI =
0.89, RMSEA = 0.03).

In addition, for a subset of the groups in Study
2, we included five additional tasks, for a total of
ten. The results from analyses incorporating all
ten tasks were also consistent with the hypothesis
that a general c factor exists (see Fig. 2). The
scree test (13) clearly suggests that a one-factor
model is the best fit for the data from both studies
[Akaike Information Criterion (AIC) = 0.00 for
single-factor solution]. Furthermore, parallel anal-
ysis (13) suggests that only factors with an eigen-
value above 1.38 should be retained, and there is
only one such factor in each sample. These conclu-
sions are supported by examining the eigenvalues
both before and after principal axis extraction,
which yields a first factor explaining 31% of

Table 1. Correlations among group tasks and descriptive statistics for Study 1. n = 40 groups; *P ≤
0.05; **P ≤ 0.001.

1 2 3 4 5 6 7 8 9
1 Collective intelligence (c)
2 Brainstorming 0.38*
3 Group matrix reasoning 0.86** 0.30*
4 Group moral reasoning 0.42* 0.12 0.27
5 Plan shopping trip 0.66** 0.21 0.38* 0.18
6 Group typing 0.80** 0.13 0.50** 0.25* 0.43*
7 Avg member intelligence 0.19 0.11 0.19 0.12 –0.06 0.22
8 Max member intelligence 0.27 0.09 0.33* 0.05 –0.04 0.28 0.73**
9 Video game 0.52* 0.17 0.38* 0.37* 0.39* 0.44* 0.18 0.13
Minimum –2.67 9 2 32 –10.80 148 4.00 8.00 26
Maximum 1.56 55 17 81 82.40 1169 12.67 15.67 96
Mean 0 28.33 11.05 57.35 46.92 596.13 8.92 11.67 61.80
SD 1.00 11.36 3.02 10.96 19.64 263.74 1.82 1.69 17.56

Fig. 1. Standardized regression coefficients for
collective intelligence (c) and average individual
member intelligence when both are regressed to-
gether on criterion task performance in Studies
1 and 2 (controlling for group size in Study 2).
Coefficient for maximum member intelligence is
also shown for comparison, calculated in a separate
regression because it is too highly correlated with
individual member intelligence to incorporate both
in a single analysis (r = 0.73 and 0.62 in Studies
1 and 2, respectively). Error bars, mean T SE.
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the variance in Study 1 and 35% of the variance
in Study 2. Multiple-group confirmatory factor
analysis suggests that the factor structures of
the two studies are invariant (c2 = 11.34, P =
0.66, df = 14; CFI = 0.99, RMSEA = 0.01).
Taken together, these results provide strong
support for the existence of a single dominant
c factor underlying group performance.

The criterion task used in Study 2 was an ar-
chitectural design task modeled after a complex
research and development problem (14). We had
a sample of 63 individuals complete this task
working alone, and under these circumstances,
individual intelligence was a significant predictor
of performance on the task (r = 0.33, P = 0.009).

When the same task was done by groups,
however, the average individual intelligence of
the group members was not a significant predictor
of group performance (r = 0.18, ns). When both
individual intelligence and c are used to predict
group performance, c is a significant predictor (b =
0.36, P = 0.0001), but average group member
intelligence (b = 0.05, ns) and maximum member
intelligence (b = 0.12, ns) are not (Fig. 1).

If c exists, what causes it? Combining the find-
ings of the two studies, the average intelligence of
individual group members was moderately cor-
related with c (r = 0.15, P = 0.04), and so was the
intelligence of the highest-scoring team member
(r = 0.19, P= 0.008). However, for both studies, c
was still a much better predictor of group per-
formance on the criterion tasks than the average or
maximum individual intelligence (Fig. 1).

We also examined a number of group and indi-
vidual factors that might be good predictors of c.We
found that many of the factors one might have ex-
pected to predict group performance—such as group
cohesion, motivation, and satisfaction—did not.

However, three factors were significantly cor-
related with c. First, there was a significant corre-
lation between c and the average social sensitivity

of group members, as measured by the “Reading
the Mind in the Eyes” test (15) (r = 0.26, P =
0.002). Second, c was negatively correlated with
the variance in the number of speaking turns by
group members, as measured by the sociometric
badges worn by a subset of the groups (16) (r =
–0.41, P = 0.01). In other words, groups where a
few people dominated the conversation were less
collectively intelligent than those with a more
equal distribution of conversational turn-taking.

Finally, c was positively and significantly
correlated with the proportion of females in the
group (r = 0.23, P = 0.007). However, this result
appears to be largely mediated by social sensitiv-
ity (Sobel z = 1.93, P= 0.03), because (consistent
with previous research) women in our sample
scored better on the social sensitivity measure
than men [t(441) = 3.42, P = 0.001]. In a regres-
sion analysis with the groups for which all three
variables (social sensitivity, speaking turn vari-
ance, and percent female) were available, all had
similar predictive power for c, although only
social sensitivity reached statistical significance
(b = 0.33, P = 0.05) (12).

These results provide substantial evidence for
the existence of c in groups, analogous to a well-
known similar ability in individuals. Notably, this
collective intelligence factor appears to depend
both on the composition of the group (e.g., aver-
agemember intelligence) andon factors that emerge
from the way group members interact when they
are assembled (e.g., their conversational turn-
taking behavior) (17, 18).

These findings raise many additional questions.
For example, could a short collective inteligence
test predict a sales team’s or a top management
team’s long-term effectiveness? More important-
ly, it would seem to be much easier to raise the
intelligence of a group than an individual. Could
a group’s collective intelligence be increased by,
for example, better electronic collaboration tools?

Many previous studies have addressed ques-
tions like these for specific tasks, but by measur-
ing the effects of specific interventions on a group’s
c, one can predict the effects of those interventions
on a wide range of tasks. Thus, the ability to
measure collective intelligence as a stable property
of groups provides both a substantial economy of
effort and a range of new questions to explore in
building a science of collective performance.
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Fig. 2. Scree plot demonstrating
the first factor from each study ac-
counting for more than twice as
much variance as subsequent fac-
tors. Factor analysis of items from
the Wonderlic Personnel Test of In-
dividual intelligence administered
to 642 individuals is included as a
comparison.
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