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Computational models in psychology play an increasingly important role in characterizing
theoretical distinctions, understanding empirical results, and formulating new predictions.
However, the proper use of models is subject to debate and interpretation, as Cook, Frith, and
Landis (1995) have demonstrated in a critique of neural network simulations reported by
Kosslyn, Chabris, Marsolek, and Koenig (1992). These simulation results supported a
distinction between two types of spatial relations encoding. Cook et al. argue that Kosslyn et
al.’s models did not process “spatial” representations and that input— output correlations rather
than properties of spatial relations encoding processes explain the performance of the models.
This article provides conceptual and analytic rebuttals of those criticisms.

Humans rely on vision for numerous purposes, some of
which make contradictory demands on our information-
processing systems. For example, to reach for objects and
navigate among them, one needs to know their precise
distances; to recognize and identify objects, however, it is
better to ignore this information. In contrast, abstract spatial
relations (such as “connected to”) among the parts of an
object can be important for recognition and identification
but not for reaching and navigation. Such considerations led
Kosslyn, Chabris, Marsolek, and Koenig (1992) to propose
that the brain represents spatial information in more than
one way, with different types of spatial representations
being useful in different circumstances (see also Jacobs &
Kosslyn, 1994; Kosslyn, 1987). Specifically, we have ar-
gued that categorical spatial relations, such as above—
below, left-right, or on—off, group a set of relative positions
into an equivalence class. These representations are useful
during object recognition and identification because they
can specify invariant relations among parts (e.g., the fact
that the forearm remains “connected to” the upper arm even
when the arm is bent in different positions). In contrast,
coordinate spatial relations specify precise metric distance;
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these representations are primarily useful for guiding motor
movements, The information that is preserved in coordinate
spatial relations representations is discarded in categorical
spatial relations representations.

An appreciation of the complexity of the brain and its role
in human behavior has led many researchers to two funda-
mental insights: First, it is unlikely that a natural language,
such as English, will allow us to express detailed theories of
brain function. Rather, the conception of the brain as a
computing machine has led researchers to adopt the vocab-
ulary of computation to describe brain function (e.g.,
Churchland & Sejnowski, 1992; Kosslyn & Koenig, 1992).
Second, informal descriptions of theories about the brain
can often explain both a result and its converse. (For an
example of this point applied to the study of cerebral later-
alization in visual processing, see the comments of Mar-
shall, 1981, on Nebes, 1978.) Thus, a primary virtue of
computational theories is that they can be instantiated in
precise models of cognitive function (implemented as com-
puter programs), which can be tested directly. We have used
results from computational models as one source of evi-
dence for the distinction between two types of spatial rela-
tions encoding, and our interpretation of these results has
recently come under fire from Cook, Frith, and Landis
(1995).

As Cook et al. (1995) have made clear, the use of com-
putational models is not always as simple or straightforward
as it might appear. Not only must many decisions not
relevant to theory be made in order to build a working
model (see Hesse, 1963; Kosslyn, 1980) but some features
of a model often can be interpreted in several different
ways. Because of the inherent ambiguities in interpreting
models, we have consistently adopted a converging evi-
dence approach to studying the nature of human spatial
relations encoding; we have examined not only the conver-
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gence in results from different types of models but also the
relation between results from models and data obtained
from experiments with human subjects.’ Although there is
ample empirical evidence that categorical and coordinate
spatial relations are encoded by at least two different pro-
cesses, these findings do not speak directly to the issues
raised by Cook et al. They challenged our assertion that
results from our computational models can be treated as an
independently valid source of evidence, and we answer that
challenge in this article.

Cook et al. (1995) argued that the conclusions Kosslyn et
al. (1992) drew from their neural network simulations are
flawed in two fundamental ways. First, Kosslyn et al. con-
ceptualized the tasks given to network models as (categor-
ical and coordinate) spatial tasks, but Cook et al. argued that
the networks do not actually process spatial information.
Second, Cook et al. argued that the performance of the
networks can be completely understood by the peculiar
correlational structure of their inputs and outputs, which has
nothing to do with a possible distinction between categori-
cal and coordinate spatial relations encoding. They argued
that the performance of the Kosslyn et al. networks simply
reflects the availability in the input stimuli of “definitive”
information, or the degree to which activation of some input
units is consistently associated with only one response.> We
address the two fundamental points made by Cook et al.
(1995) and conclude with some general observations about
the role of computational modeling in a larger program of
empirical research.

Spatial Properties in Neural Network Models

Cook et al. (1995) placed much stock in their claim
that the Kosslyn et al. (1992) network models did not
process spatial information. They showed that networks
with scrambled input arrays produced similar results to
those that do not have scrambled input arrays, and they
concluded that this result shows that the input array is not
spatially organized. As discussed below, Cook et al.’s cri-
tique rests on infelicitous assumptions about the nature
of spatial representations and the structure of receptive
fields.

Spatial Representations

Consider the fact that a photoreceptor located above an-
other photoreceptor in the retina actually encodes a location
perceived as below that of the latter cell. One way to
demonstrate this fact is to stimulate the receptors and de-
termine whether the subject sees one location as above or
below the other (i.e., examine how input vectors are mapped
to spatial judgments on the part of the human subject). To
establish this mapping, we need to know the spatial judg-
ments (the output) and how they are correlated with stim-
ulation of retinal cells (the input). Only by examining this
relation can we determine anything about the functionally
spati%l properties of the information in the array of retinal
cells.

! The empirical evidence is derived from three methods, the first
of which is divided visual field studies. For example, Heillige and
Michimata (1989) and Kosslyn, Koenig, et al. (1989) lateralized
stimuli that contained a bar and a dot, and asked the subjects to
decide whether the dot was above or below the bar or whether it
was within a criterion distance of the bar. Subjects made the metric
judgment faster when the stimuli were presented in the left visual
field (and hence were encoded initially by the right hemisphere)
and tended to make the categorical judgment faster when the
stimuli were presented in the right visual field (and hence were
encoded initially by the left hemisphere). Indeed, Kosslyn, Koenig,
et al. (1989) showed that subjects judge whether objects are within
1in,, .5 in, or 1 cm faster in the right hemisphere, and evaluate
on-off, above—below, or left-right faster in the left hemisphere.
(These basic findings have been obtained many more times, e.g.
Hellige et al., 1994; for a review, see Kosslyn, 1994; cf. Laeng &
Peters, in press). The dissociation between hemisphere and judg-
ment would not occur if only one type of process were used to
encode both types of spatial information. The second method
focuses on deficits following focal brain lesions. Researchers have
documented selective deficits for the two kinds of spatial relations
encoding following damage to the left or right cerebral hemi-
spheres (e.g., see Laeng, 1994). The third method is brain imaging.
Our group has recently used positron emission tomography to
show that the posterior left hemisphere is more active when
subjects encode categorical spatial relations than when they encode
metric spatial relations, but vice versa for the posterior right hemi-
sphere (Kosslyn, Gitelman, Thompson, Rauch, & Alpert, 1994).

2 Cook et al.’s (1995) critique also rested partly on the notion
that the hidden-layer units in the models failed to abstract general
principles of spatial processing to solve the problem of encoding
spatial relations. Cook et al. asserted, regarding an example of their
own devising but meant to be analogous to Kosslyn et al.’s (1992)
networks, that “The net now shows little ability to generalize
because the hidden units do not encode general concepts [italics
added] of the geometrical structure of the input patterns” (p. 412).
This conclusion would appear to be supported by the results of
Scalettar and Zee (1988), who found that a three-layer feedforward
network did not learn a single “generalizable representation of a
categorical spatial relation (left—right), but instead developed rep-
resentations of specific exemplars. However, although the Scalet-
tar and Zee results are intriguing, we should point out that their
network architecture used as many hidden units as input units (10
each; see Scalettar & Zee, 1988; p. 193), whereas that of Kosslyn
et al. (Study 1, Part 1; p. 566) used between 4 and 10 hidden units
in the categorical partition with a 28-unit input array. Furthermore,
the Scalettar and Zee training procedure involved drilling the
network on input—output pairs on which performance was poor
(Scalettar & Zee, 1988, p. 194). Both of these practices (large
hidden layers and drilling) may foster the development of exem-
plar-based representations at the hidden layer and were not fol-
lowed by Kosslyn et al. Thus, the conclusions of Scalettar and Zee
do not necessarily apply to the Kosslyn et al. studies.

In addition, Kosslyn (1980, 1994) reviewed evidence that people
can shift the focus of attention, even if no eye movements are
made. By shifting the location of attention, one can essentially
translate the input region of the network to different portions of the
visual field, which will help the network to encode spatial relations
in a wide range of positions, even if no general concept is
represented.

3 Cook et al. (1995) wrote “The essential question is whether the
Kosslyn et al. neural nets, when making judgments about such
inputs, actually detect spatial information in the input stimuli or
perhaps detect only specific combinations of on—off units, and
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The same is also true in network models. To understand
the function that a network computes, we must determine
how input vectors are correlated with output vectors. For the
original 80 unscrambled vectors in Cook et al.’s (1995)
models (see Cook et al., Table 3), the coefficients are all 1.0
for correlations between Input Units 1-9 and the “above”
o.itput unit, and they are all 1.0 between Input Units 2028
and the “above” unit. (A different sign should have been
included for the coefficients for Input Units 1-14 and for
Input Units 15-28; although the particular sign is arbitrary
[it depends on how O and 1 were used to code the input], the
above and below judgments should have opposite signs.*)
Such information about the training patterns indicates that
the networks were trained to treat Input Units 1-9 as
encoding locations above those encoded by Input Units
20-28.

It is important to note that in Cook et al.’s (1995) scram-
bled input vectors, Input Units 7-10 are switched with Input
Units 25-28, but the correlations between these units and
“above” responses remain the same as before the units were
switched (Cook et al., p. 412). Hence, after scrambling,
these correlations still reveal that the networks were trained
to treat Input Units 7-10 as encoding locations that are
functionally above those encoded by Input Units 25-28.
That is why Cook et al. found the same pattern of results for
networks trained with our original vectors and for those
trained with the scrambled vectors—nothing was function-
ally changed by scrambling the vectors (cf. Scalettar & Zee,
1988). Scrambling the original input array did not change
the functionally defined locations of input units because the
input—output mappings were not changed as well. From an
outside observer’s point of view the input was scrambled,
but from the network’s point of view a spatial representation
was still present. Altering the input (e.g., scrambling) need
not affect the functional relations if the mechanism that
accesses the input compensates appropriately.

Thus, scrambling the input array does not guarantee that
the network will respect the organization the modeler in-
tends; the modeler must specify what is intended by the way

thus make cotrect judgments that have no relation to human
performance” (p. 412). It is an error to pit spatial information
against specific combinations of on—off units. Putnam (1973)
eloquently pointed out the distinction between explanations and
“parents of explanations.” If one wants to know why a square peg
will not fit in a round hole, one does not ask about properties of
molecules—one asks about shape and rigidity. There is a clear
relationship between the two levels of analysis: Properties of
molecules obviously contribute to properties of objects. But just as
properties of objects cannot be replaced by properties of mole-
cules, or properties of architectural styles cannot be replaced by
properties of building materials, properties of representations and
computations cannot be completely replaced by properties of in-
dividual units and connections. In networks, spatial information
(or any kind of information) is specified by using combinations of
on—off units, but it also can be characterized at a higher level of
analysis. Depending on what question is being asked, different
levels of analysis are appropriate for the answer; given that we are
asking about spatial relations encoding, the level of representations
and computations clearly is appropriate.

the mapping between input and output is defined. Networks
of the sort we used are not instructed in advance exactly
how to map the input onto the output; they develop an
appropriate mapping in the course of training. If it is ad-
vantageous to interpret the input spatially to produce the
requisite output, the network may well do so.

Our claim that scrambling the input did not affect the
spatial properties of the input representation may seem
incompatible with the fact that many of the early cortical
areas that process visual input are topographically organized
(for a review, see Kosslyn, 1994). However, the topograph-
ically organized regions of the brain are preconfigured to
perform the mappings a specific way, and thus the effects of
scrambling would have to override a preexisting organiza-
tion; this is not analogous to training a scrambled net from
scratch. Cook et al.’s (1995) manipulation may at first
glance seem compelling because one assumes that the input
array has an inherent spatial organization, which is dis-
rupted by scrambling—but the array does not have such an
inherent spatial organization; the spatial organization only
develops as the input—output mapping is established. If
networks were trained with one mapping and then scram-
bled, they would probably not perform as well as unscram-
bled networks.’

4 Note also that correlations between the input units and only
one of the two relevant output units are reported in each column of
Table 3 in Cook et al. (1995). For example, the 10th column in
Table 3 illustrates the product-moment correlation coefficients
between input units and the “above” categorical output unit across
the 80 training vectors used to replicate Study 1, Part 1 of Kosslyn
et al. (1992). Because the coefficients associated with Input Units
15-28 are negative, these coefficients reflect correlations with the
“above” output unit; activation of input units in the lower visual
field tend to be negatively correlated with an above response.
However, in Table 3 Cook et al. failed to provide the correlations
with the “below” output unit. These correlations are critical be-
cause definitive information must be registered by high correla-
tions with the opposite signs in the responses of the two output
units; high correlations with the responses of both output units
would not indicate definitive information any more than would
low correlations with both output units, given that correct re-
sponses were always coded through two output units with opposite
values (e.g., above unit on, below unit off). The correlations with
the below output unit also indicate why the minus signs that are
missing in the coefficients of Cook et al.’s Table 3 are important;
without them, the network cannot recover the specific response.

5 Moreover, even in the brain the topographically mapped areas
do not preserve the image on the retina perfectly: The cortical
representations typically expand the foveal regions, represent only
a portion of the field, and are neither isotropic nor homogeneous.
Thus, space is not veridically represented by the physical organi-
zation of these areas, and spatial properties are preserved only
because of the nature of the connections (i.c., the mapping) to later
areas. For spatial encoding, the mappings from these areas project
to the posterior parietal lobe, which is not topographically orga-
nized in monkeys (Andersen, Asanuma, Essick, & Siegel, 1990).
There is no qualitative difference between the kind of compensa-
tions that are necessary in these mappings and those that would be
necessary if the lower level areas were not topographically orga-
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However, even if there is a preexisting representation that
is spatially organized, scrambling the input to it does not
necessarily prevent the resulting representation from being
spatial. Consider the results of two experiments that “scram-
ble” the input of organisms. Sperry (1943) cut the optic
nerve in newts and rotated the eye 180°. After the nerve
regenerated, the newts behaved as if their visual world had
been inverted and shifted left for right. Furthermore, no
amount of practice could reverse the deficit. Different re-
sults were found in an experiment by Knudsen and Brainard
(1991). These investigators raised barn owls with prismatic
spectacles that exposed distinct portions of the retinae to
relatively constant conditions of displaced vision, blocked
vision, or normal vision. Where the lenses displaced visual
input, large adaptive changes occurred in auditory spatial
tuning in the tectal auditory space map; learning processes
were able to compensate for the fact that the prisms gave the
owls scrambled input. From the Sperry (1943) and Knudsen
and Brainard (1991) experiments, can we conclude that
newts, which could not learn to compensate for scrambled
input, use spatial information, whereas owls, which can
learn to compensate for scrambled input, do not use spatial
information? On the basis of the logic they have applied in
their critique of the Kosslyn et al. (1992) models, it would
appear that Cook et al. (1995) would take the fact that owls
can learn to compensate for scrambled input to imply that
they do not use spatial information.

In short, then, whether a representation is spatial can only
be determined within the context of a processing system; if
a representation implicitly specifies geometric relations that
can be used by other parts of a system, then that represen-
tation is spatial.

Receptive Fields

The fact that the networks spontaneously develop spa-
tially localized receptive fields is evidence that the input had
spatial properties. For a neuron, a receptive field is the set of
locations in space where a stimulus will cause the neuron to
respond; for network models, a receptive field for a hidden
unit is the set of units in the input array that have high
weights on the connections to that hidden unit (and hence
input from those units has a relatively large influence on the
activation state of the hidden unit). The Kosslyn et al.
(1992) networks developed spatially localized receptive
fields spontaneously, with high weights being defined over
limited pockets of the input array for each hidden unit. In
reference to Part 1 of Study 3 in Kosslyn et al., Cook et al.
(1995) asserted “. . . this receptive field measure was in fact
nothing more than another way of looking at the differences
in net performance that were due to the number of input

nized. The physically topographic organization appears to foster
local inhibitory interactions, which are useful for detecting edges
and similar properties. But such organization apparently is not
critical for encoding spatial relations per se; if it were, the various
distortions in the maps would affect the encoding of spatial rela-
tions, but they do not.

units with definitive information” (p. 421). But this is not
so: The high weights were not distributed randomly over the
input array; it was not the sheer number of such weights that
was critical, but rather how they were organized. The re-
ceptive fields were organized spatially: Connections from
nearby locations (with location being characterized within
the context of the system itself) had high weights, and
weights decreased with distance (defmed by number of
umts) from the center of a region.® Such local organization
is an inherent aspect of a spatial structure and would make
no sense if the input array were treated in the model as an
unstructured montage.’

According to Cook et al. (1995), “the main error in the
original work was to conceptualize the tasks given to simple
back-propagation networks as ‘categorical’ and ‘coordinate
spatial’ without checkmg to see how the nets actually per-
formed” (p. 410).2 In fact, Kosslyn et al. (1992) and Jacobs
and Kosslyn (1994) not only reported detailed analyses of
receptive fields in order to discover the nature of the input—
output mappings but also experimentally manipulated key
features of these properties to confirm the original post hoc
analyses and inferences. The major inference was that cat-
egorical spatial relations are consistently encoded more
effectively when input units have relatively small, nonover-
lapping receptive fields, whereas coordinate (metric) spatial
relations are consistently encoded more effectively when

© This characterization of receptive fields in networks also lies at
the heart of the models reported by O’Reilly, Kosslyn, Marsolek,
and Chabris (1990). They provided networks with two-dimen-
sional input arrays that contained a single point, and required the
networks to indicate the X and Y coordinates of the point. These
networks were hardwired to have large receptive fields, and they
performed best when these receptive fields were distributed across
the input array. This result is analogous to what was found in the
Kosslyn et al. (1992) simulations of metric spatial relations en-
coding (Part 2 of Study 3 and Study 4). In both models, it was
properties of the spatial structure of the input that dictated how
well the models could encode location, and in both cases location
was functionally defined.

7 Although it is logically possible to register a categorical spatial
relation with just a single input unit if the stimulus appears within
a fixed region of the input field, we did not find such cases; in fact,
the average receptive field size for categorical encoding was 4.8
units (Kosslyn et al., 1992, p. 570). It is also worth noting that
although the simulations of metric encoding had fewer input units
with definitive information, those units were distributed over a
larger region than the input units in the simulations of categorical
encoding.

8 The appropriate terminology is categorical spatial relations
and coordinate spatial relations—both types of representations
are spatial. Cook et al. (1995) also apparently misread our earlier
papers in other ways; for example, they claim that the Kosslyn
(1987) snowball hypothesis of the development of hemispheric
specialization “contrasts with the possibility that hemispheric in-
teractions may also contribute significantly to functional differ-
ences. ... It could be that their ... mutual inhibitory influences

.. amplify small intrinsic differences” (Cook et al., p. 416). In
fact, Kosslyn, Sokolov, and Chen (1989), who implemented a
version of the Kosslyn (1987) theory, explicitly simulated the
effect of mutual inhibition between the hemispheres on special-
ization.
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input units have relatively large, overlapping receptive
fields. For coordinate judgments, the networks relied on
coarse codes, whereas for categorical judgments they did
not. A coarse code corresponds to the pattern of output from
a set of broadly tuned units (as occurs when units have
Jarge, overlapping receptive fields); the profile of relative
coatributions of each unit comprises the representation, in
just the way that the relative outputs of the three types of
cones on the retina specify hue. The importance of this
aspect of network design is a computational finding that
provides evidence for the conceptual distinction between
the two types of encoding.

In summary, we find no grounds for accepting Cook et
al.’s (1995) claim that the Kosslyn et al. (1992) networks
did not use spatial information. Not only are spatial prop-
erties of input defined by the way the input is processed but
also the existence of well-defined receptive fields is good
evidence that the input in our models did function spatially.

Definitive Information Versus Spatial Relations

The second major issue raised by Cook et al. (1995) is
independent of the first, and, in our view, poses a more
serious challenge to the claim that Kosslyn et al.’s (1992)
models provided an independent source of convergent evi-
dence for the distinction between two types of spatial rela-
tions representation. Cook et al. argued that the purported
differences between types of spatial relations representa-
tions were actually due to imbalances in the correlations
between input and output unit activity, which rendered the
results an artifact of differences in difficulty. Cook et al.
correctly noticed that “. . . when any of the first 9 input units
were on, the categorical judgment was always above (and
when any of the last 9 units were on, always below)” (p.
417). Cook et al. argued that such definitive information
allowed the networks to compute above and below without
needing to compute spatial relations. We were interested in
understanding spatial relations, that is, the assessment of
one object’s location relative to that of another.

Cook et al. (1995) have discovered a confound in the
original Kosslyn et al. (1992) simulations, which leads us to
view those results with caution. However, their observation
indicates that another account is possible, not that the orig-
inal one is necessarily incorrect.” Indeed, there is good
reason to believe that Cook et al.’s possible account has
limited generality and does not significantly undermine the
Kosslyn et al. simulation results as evidence for two types of
spatial relations computations. Accordingly, we next con-
sider split versus unsplit networks, the distinction between
definitive versus diagnostic information, and the relative
importance of variations in receptive field size and defini-
tive information.

Split Versus Unsplit Networks
Cook et al. (1995) focused on the first models reported by

Kosslyn et al. (1992), in which two types of networks were
compared. In some, a single network encoded both categor-

ical and coordinate spatial relations; in others, the hidden
layer of the network was segregated, so that different output
streams were created. This technique was originally used by
Rueckl, Cave, and Kosslyn (1989) to show that “what” and
“where” are encoded best by a system that segregates the
two types of information, as in fact occurs in the brain (e.g.,
Ungerleider & Mishkin, 1982). Cook et al. correctly noted
that the mere fact that split networks can encode categorical
and coordinate information more effectively than do unified
networks is not strong evidence for the psychological va-
lidity of the distinction. They pointed out that this result
merely demonstrates that two different types of mappings
are performed when these two judgments are made by the
models. However, Cook et al. went a step beyond this: They
argued that the two judgments are not based on encoding
categorical versus coordinate spatial representations but
rather are based on distinguishing between large-amount-
of-definitive-information versus small-amount-of-defini-
tive-information. According to Cook et al., split networks
perform better than unsplit networks because the two tasks
differ in this regard, not because of anything having to do
with encoding categorical and coordinate representations
per se. '’

We agree that one should not rely solely on the split
network technique when using computational models to
produce evidence that two processes are computationally
distinct. However, if two processes do in fact rely on dis-
tinct computations, then their input—output mappings will
interfere within a single network—and hence we expect a
unified network to perform worse than a split network
(provided that the hidden units are allocated appropriately;
see Kosslyn et al., 1992, p. 566; Rueckl et al., 1989). The
fact that another account for these particular simulations is
possible does not completely undercut their utility: If the
results had come out differently, with either no difference or
with the unified network’s performing better (as Kosslyn et

? In fact, the theory that was evaluated with the simulations also
led us to predict that the hemispheres typically differ in the size of
the regions of space that are monitored, and Kosslyn, Anderson, et
al. (1994) later confirmed this prediction (but also showed that
such differences can be modified by attentional factors). In addi-
tion, the claim that categorical spatial relations are processed more
efficiently with smaller receptive fields predicts that blurring the
stimuli should impair performance of a categorical spatial relations
task more than a coordinate spatial relations task; Cowin and
Hellige (1994) have demonstrated exactly this effect. Moreover,
the fact that the models demonstrated effects of discriminability,
which were based on the ease of defining the bins of space that are
encoded, allowed Kosslyn et al. (1992) to explain effects of
discriminability that were found in people (see Kosslyn, Koenig, et
al., 1989).

10 We have sometimes emphasized the distinction between pro-
cesses that encode categorical versus coordinate information and
sometimes emphasized the distinction between categorical versus
coordinate spatial relations representations. We assume that dis-
tinct processes are used to encode the qualitatively distinct types of
representations. Indeed, in networks the pattern of weights distrib-
uted on connections (the representation) actually delineates the
course of processing.
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al. showed that it does when two coordinate spatial relations
must be encoded at the same time), this would have been
evidence against the theory.

Cook et al.’s (1995) observations underline a critical
aspect of our approach: The use of converging evidence.
Just as we do not rely on a single type of evidence within
the research program as a whole (relying on results from
divided-visual-field studies, brain imaging, brain damage,
and computational models), we do not rely on a single type
of model to produce computational evidence. Indeed,
Kosslyn et al. emphasized not the split~unsplit models,
which Cook et al. have focused on, but rather the models in
which receptive field sizes were manipulated or measured.
These models make the closest contact with the novel
aspects of the theory that have been subjected to successful
empirical test (e.g., Cowin & Hellige, 1994; Kosslyn,
Anderson, Hillger, & Hamilton, 1994).

Definitive Versus Diagnostic Information

Kosslyn et al. (1992) and Jacobs & Kosslyn (1994) have
argued that when humans encode categorical spatial rela-
tions such as above—below and left-right, they define spa-
tial “bins” that are used to perform the task. In fact, as
Kosslyn et al. pointed out (p. 569), when it is difficult to
delineate such bins, the left hemisphere should not have an
advantage in this type of encoding; this observation allowed
Kosslyn et al. to explain some of the otherwise paradoxical
results of Sergent (1991). It is useful to distinguish between
definitive information, which refers to the use of absolute
locations instead of spatial relations, and diagnostic infor-
mation, which merely signals a specific spatial relation. (By
the term absolute, we mean a fixed location within a refer-
ence field, such as an array in a computer or on a screen in
front of a subject.) Kosslyn et al. (1992) stated the follow-
ing:

Sets of these {small] receptive fields would define particular
areas, which could be used to specify regions that are above or
below a reference point...if the receptive fields did not
overlap at all and the categories corresponded to discrete
regions of space, such mappings would be ‘linearly separa-
ble’—so straightforward that they could be accomplished by
direct connections from the input units to the output units. . . .
(p. 569)

In other words, in some cases the presence of stimuli at two
locations can directly signal a specific categorical spatial
relation. Note that this is a true spatial relation: What is
critical is the relative positions, not the absolute position.
The difference between definitive and diagnostic infor-
mation can be illustrated by contrasting two versions of the
“analogous psychological experiment” offered by Cook et
al. (1995). They described a situation in which subjects
must determine whether degraded images of faces are male
or female and are young or old. In their analogy, 24 of the
40 male faces have a blob on the left and 24 of the 40 female
faces have a blob on the right; also, 6 of the male and 6 of
the female faces have a blob on the top, which always
indicates that the face is young. Their point is that the blobs

alone would provide definitive cues that allow subjects to
make the judgments without actually processing the faces.
In this case, the blobs are added to the stimuli, they are not
intrinsic to them. Now consider an illustration of diagnostic
information: The size of the eyebrow ridge is large for 24 of
the 40 male faces and short for 24 of the 40 female faces,
and wrinkles appear on 6 of the older male faces and 6 of
the older female faces. In these cases, the cues are an
inherent part of the stimuli, not something extraneous that is
added later.

Our claim is not that categorical spatial relations are
encoded by seeking the presence of a cue at a specific place
in the visual field; rather, by encoding the presence of
stimuli at two specific locations, one can quickly encode
some categorical spatial relations. Such cues are not always
effective, however; Ullman (1985) argued that in some
cases on—off or inside—outside judgments can be made only
after a boundary is traced (for evidence, see Jolicoeur,
Ullman, & Mackay, 1986). Even in such cases, however, it
would still be useful to monitor outputs from relatively
small receptive fields, and the categorical spatial relations
encoding subsystem should play a role in adjusting the
attentional scale and comparing relative locations.

Receptive Field Size Versus Definitive Information

As Cook et al. (1995) pointed out (see p. 422), by hard-
wiring receptive fields of different sizes, we greatly reduced
the correlations between individual input and output units.!!
Nevertheless, we still observed clear and principled differ-
ences between categorical and coordinate encoding (e.g.,
Kosslyn et al., 1992, Study 3, Part 2). The results from the
hardwired simulations lined up well with those found when
networks spontaneously developed similar receptive fields.
The convergent findings when the imbalances are small and
when they are large show that such imbalances alone cannot
explain all of the processing differences between the two
tasks.

In addition, there are analytical reasons for conclud-
ing that units with small, nonoverlapping receptive fields
are best for encoding categorical visual representations,

"1t is difficult to know what to make of Table 4 in Cook et al.
(1995). They claim to be discussing the receptive fields added by
Kosslyn et al. (1992) in their Study 3, Part 2 and Study 4 (see Cook
et al., p. 421). Thus, they provide point-biserial correlation coef-
ficients between input units with “large” receptive fields and the
output units, presumably computed across all 80 training patterns.
However, whereas Cook et al. gave values for 28 input units,
Kosslyn et al. used just 14 receptive fields in the crucial experi-
ment (Study 3, Part 2) that produced the expected categorical—
coordinate dissociation. When we analyzed the receptive field-
filtered input arrays actually used by Kosslyn et al. (pp. 570-572),
we found mean correlations of .19 and .38 for coordinate and
categorical tasks, respectively, with large receptive fields (o =
1.42), much lower than the .26 and .57 means reported by Cook et
al. (Furthermore, although Cook et al. also showed correlations for
large receptive fields in the dual-coordinate task used in Study 1,
Part 2 of Kosslyn et al., this task was not actually used in receptive
field simulations by Kosslyn et al.)
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whereas units with large, overlapping receptive fields are
best for encoding coordinate representations. Hinton (1981)
provided a quantitative understanding of the relationship
between receptive field size and resolution in the case of a
set of binary units, each of which becomes active when a
stimulus falls within its receptive field. Let D denote the
d.ameter of a unit’s receptive field, k denote the dimension-
ality of the space to be represented, and N denote the desired
number of just-noticeable differences in each dimension
(i.e., the desired resolution). The number of units required to
achieve this resolution is N¥/D¥~1. That is, for a fixed
number of units, a high-resolution coarse code (i.e., a code
with a large N) requires units with large receptive fields
(fields with a large diameter D), whereas a low-resolution
code can be achieved with units with small receptive fields.
(Note that this equation applies only when the input array
has two or more dimensions; Jacobs & Kosslyn, 1994,
essentially replicated the Kosslyn et al., 1992, results when
two-dimensional stimuli were used.)

If we make the reasonable assumption that coordinate
visual tasks require relatively high spatial resolution, then
this analytic result implies that filtering input through units
with large receptive fields is especially good for performing
these judgments. In contrast, filtering input through small,
nonoverlapping receptive fields should facilitate encoding
categorical spatial relations for reasons noted above. For
present purposes, it is of interest that the relationships
between task, resolution, and receptive field size are inde-
pendent of the presence or absence of correlations between
input and output units; neither the equation governing the
relationship between resolution and receptive field size nor
the assumptions regarding the relationships between task
and receptive field size make use of such correlations. Thus,
our conclusions are the same whether or not definitive
information is available in a particular categorical or coor-
dinate task.

Finally, Jacobs and Kosslyn (1994) reported results that
document the independence of the relationship between
effect of receptive field sizes and the presence or absence of
correlations among input and output units. In their network
models, Jacobs and Kosslyn placed two stimuli at different
locations on a two-dimensional input array; one stimulus
was a particular shape and the other was a horizontal bar.
The networks encoded not only spatial relations but also
whether the stimulus was a specific object or a member of
a shape category. Fourteen Gaussian units with specific
receptive field sizes registered input in the array. That is,
each pattern of activation over the input units was trans-
formed to a pattern of activation over the Gaussian units;
this transformed pattern may be thought of as a representa-
tion that corresponds to a point in a 14-dimensional space,
which we call Gaussian unit space. Note that Gaussian units
with different receptive field sizes represent a given stimu-
lus on the input array as different points in this space.

Jacobs and Kosslyn (1994) defined a measure of the
“goodness” of such representations as the minimum Euclid-
ean distance between points in Gaussian unit space for
different judgments (e.g., above versus below). If this dis-

tance is small, then the nearest points from different judg-
ments are difficult to distinguish. In contrast, if this distance
is large, then the nearest points from different judgments are
easily distinguished. The results showed that Gaussian units
with small, nonoverlapping receptive fields provided a bet-
ter representation for encoding categorical spatial relations
and shape categories, whereas Gaussian units with large,
overlapping receptive fields provided a better representation
for encoding coordinate spatial relations and specific shape
exemplars. This result cannot depend on the presence or
absence of correlations between input units and output
units: These correlations were the same for representations
derived from input units with different receptive field sizes.

In summary, the presence of definitive information in the
input should make us cautious in interpreting the resuits
from the Kosslyn et al. (1992) split—unsplit network simu-
lations; the available results do not allow us to discriminate
between the two interpretations. However, such definitive
information does not undercut the fact that different-sized
receptive fields were more effective for encoding the dif-
ferent judgments, which stands as computational evidence
for the proposed distinction between two types of spatial
relations encoding.

Conclusion

Computational modeling in cognitive neuroscience is a
tool that can help us understand how the human brain
accomplishes certain functions. As such it is an integral part
of a larger research program that frames the issues to be
modeled and uses the results of modeling as impetus for
additional experimentation. Our analysis and modeling sug-
gested to us that the visual system encodes categorical
spatial relations, such as above-below, in part by carving
space into discrete bins, which is accomplished effectively
by using outputs from units with relatively small receptive
fields— once different portions of a stimulus are localized in
specific bins, the judgment can be made easily. In contrast,
we found evidence that metric spatial relations are encoded
via coarse coding, which depends on the comparisons of
outputs from units with large, overlapping receptive fields.

Cook et al. (1995) offered two major criticisms of our
computational models. The first, the claim that the models
did not speak to how spatial relations are encoded, is off the
mark. What counts as “spatial” can only be assessed from
within the context of a processing system; if a representa-
tion implicitly specifies geometrical relations (from the
point of view of processes that use that representation), it is
spatial. The second criticism has more force. Cook et al.
observed that the presence of a stimulus in some regions of
the input array could signal the correct response, and thus
the networks need not have computed categorical spatial
relations. This criticism leads to a viable (but not necessarily
correct) alternative interpretation of the results from split
and unsplit networks, but does not apply to the finding that
different-sized receptive fields facilitate the two types of
spatial relations encoding; this form of computational evi-
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dence is critical because it is tied closely to recent (some-
times counterintuitive) empirical results with humans (e.g.,
Cowin & Hellige, 1994; Kosslyn, Anderson, et al., 1994).

We agree that it is important to explore further the role of
such distinctive information in these kinds of models. One
way to do so would be to use large-scale, realistic training
sets in which there are many objects, each of which projects
many different patterns of “light” on the input array because
of translation, rotation, changes in illumination and so on; in
such networks definitive information would be not available
in large portions of the input array.

In closing, we wish to emphasize that computational
models of human performance can not only provide support
for a conceptual distinction but also lead one to conduct
new, fruitful empirical research with humans. For a model
to be useful, one must not only understand how it operates
but also must derive specific predictions from its properties.
Cook et al. (1995) summarized their objections to Kosslyn
et al. (1992) by stating “Their recent work . . . has not been
successful. . .. The effects do not correspond to human
performance on similar tasks. . . .” (p. 422). We feel that this
is an overstatement, given that the simulations were de-
signed to perform one of the tasks Hellige and Michimata
(1989) and Kosslyn, Koenig, et al. (1989) administered to
humans, and that the models did indeed capture many
features of human performance on those tasks (such as the
effects of discriminability on performance; see Kosslyn et
al., Study 2). The models were used in conjunction with
research on how human subjects encode spatial relations;
the primary measures of their adequacy are how well they
fit the prior data and the extent to which their predictions are
later confirmed empirically.

In our view, network models of the sort we implemented
are but one form of converging evidence. Such evidence is
useful in combination with results from behavioral experi-
ments with normal subjects, tests of patients with brain
damage, and findings from brain-scanning techniques.
Computational models also can help one to account for
previously reported data and to derive predictions for new
studies with human subjects. Our models have played these
roles well.
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