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Results of 4 sets of neural network simulations support the distinction between categorical and
coordinate spatial relations representations: (a) Networks that were split so that different hidden
units contributed to each type of judgment performed better than unsplit networks; the reverse
was observed when they made 2 coordinate judgments. (b) Both computations were more difficult
when finer discriminations were required; this result mirrored findings with human Ss. (c)
Networks with large, overlapping “receptive fields” performed the coordinate task better than
did networks with small, less overlapping receptive fields, but vice versa for the categorical task;
this suggests a possible basis for observed cerebral lateralization of the 2 kinds of processing. (d)
The previously observed effect of stimulus contrast on this hemispheric asymmetry could reflect
contributions of more neuronal input in high-contrast conditions.

Vision, like all other complex mental functions, is accom-
plished by a method of divide and conquer. Many relatively
simple component systems work together to process infor-
mation (cf. Maunsell & Newsome, 1987; Van Essen, 1985).
A major division of labor is achieved by systems in the
temporal and parietal lobes, whereby the former encodes
object properties (such as shape and color) and the latter
encodes spatial properties (such as location and size; see
Kosslyn, Flynn, Amsterdam, & Wang, 1990; Maunsell &
Newsome, 1987; Ungerleider & Mishkin, 1982). Both of these
major systems can be further divided into component subsys-
tems. In this article, we focus on the system that encodes
spatial properties and argue that this system is divided into at
least two subsystems that compute different kinds of represen-
tations of spatial relations.

The research reported here builds on the analyses and
findings of Kosslyn (1987) and Kosslyn, Koenig, et al. (1989).
We further develop their conception of the two kinds of spatial
relations representations by considering implications of the
new results reported by Sergent (1991), additional analyses of
what is required to build a system that behaves in particular
ways (Marr, 1982), and additional facts about the neural
substrate. Sergent’s findings have led us both to characterize
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the distinction more rigorously and to link the distinction
more tightly to properties of the brain.

Computational considerations suggest that different kinds
of representations of spatial relations would be useful for
different purposes. Consider two contexts in which people use
spatial information. First, people must use spatial information
to guide actions, ranging from moving the eyes to reaching
and navigating. In fact, many cells in the posterior parietal
lobes appear to have some role in movement control, firing
either before or after a movement or registering the position
of an effector (see Andersen, 1987; Hyvarinen, 1982). For
guiding action, metric spatial information must be specified;
simply knowing that a table is “next to” a wall does not help
one walk right up to it without bumping into the edge.

Second, people often need to encode spatial relations to
identify an object or scene. For this purpose, the brain does
not need to represent metric information precisely; differences
in the precise positions of two objects or parts often are not
relevant (and in fact are potentially harmful) for distinguishing
them from other objects or parts (cf. Biederman, 1987).
Rather, spatial relations are assigned to a category, such as
“connected to,” “left of,” or “above.” For some purposes, it
may also be useful to assign a spatial relation to a distance
category, such as “one inch away,” but this sort of category
must be distinguished from the kind of analog encoding of
metric distance that is necessary to guide action (e.g., see
Kosslyn & Koenig, in press; Osherson, Kosslyn, & Hollerbach,
1989).

These considerations lead us to the hypothesis that the
brain represents spatial relations in two ways. First, coordinate
representations specify precise spatial locations in a way that
is useful for guiding action. The units of these representations
are not equivalence classes; rather, they delineate the finest
possible division of space (subject to the resolution limitations
of the visual system). These representations do not correspond
to particular movements; rather, they specify spatial coordi-
nates in a way that can be used to guide a variety of move-
ments (see Chapter 7 of Kosslyn & Koenig, in press). Second,
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categorical representations assign a range of positions to an
equivalence class (such as connected/unconnected, above/
below, left/right). For many objects, parts retain the same
categorical spatial relations, no matter how the object con-
torts; thus, the specification of categorical spatial relations is
a critical aspect of a robust representation of an object’s shape
(cf. Marr, 1982). For example, even though its position in
space varies widely, a cat’s paw remains connected to (a
categorical spatial relation) its foreleg regardless of whether
the cat is curled up asleep, running, or batting an insect.

We distinguish coordinate representations from those used
in recognition partly because the spatial information used to
guide action appears to be “encapsulated” (e.g., McLeod,
McLaughlin, & Nimmo-Smith, 1985); that is, the information
used to guide action is not readily accessible to the systems
used to categorize stimuli.

Neuropsychological findings have supported the contention
that the two kinds of spatial representations are encoded by
separate processing subsystems. Hellige and Michimata
(1989), Koenig, Reiss, and Kosslyn (1990), and Kosslyn,
Koenig, et al. (1989) all found that subjects judge distances
relatively faster when the stimuli are presented initially to the
right cerebral hemisphere (i.e., in the left visual field), whereas
they evaluate some categorical spatial relations relatively
faster when stimuli are presented initially to the left cerebral
hemisphere (i.e., in the right visual field) or equally well when
stimuli are presented to the left or right hemispheres. Although
the left-hemisphere advantage is rarely significant in a single
experiment, a trend toward a left-hemisphere advantage for
categorical relations was evident in six experiments in which
low-contrast stimuli were presented to normal adult subjects
(Hellige & Michimata, 1989; Experiments 1, 2, 3, 4 of Kos-
slyn, Koenig, et al., 1989; Koenig et al., 1990), whereas a
trend toward a right-hemisphere advantage was evident only
once, in a difference of less than 1 ms (Experiment 4 of
Sergent, 1991). According to the binomial distribution (sign
test), the probability that this pattern of results is attributable
to chance is .06.'

More recently, however, Sergent (1991) reported that this
dissociation occurs only when stimuli are relatively degraded,
and she inferred that this result does not reflect a distinction
between two qualitatively different ways of representing spa-
tial relations. Sergent assumed only that when the stimuli are
degraded, the right hemisphere can more effectively encode
precise spatial location. She offered as one piece of evidence
against the distinction the fact that more difficult discrimi-
nations (defined by relative distance) affect categorical judg-
ments as well as metric judgments. In addition, Sergent of-
fered arguments that the distinction itself is conceptually
flawed.

In this article, we report the results of computer simulations
that support three assertions about the distinction between
categorical and coordinate spatial relations representation.
First, there is a clear conceptual distinction between categor-
ical and coordinate spatial relations representations; second,
both sorts of representations are more difficult to compute
when fine discriminations must be made, just as was found
previously with human subjects; and, third, the effects of
stimulus quality can be accounted for easily by reference to a

simple computational mechanism. However, Sergent’s (1991)
findings have led us to reconsider Kosslyn’s (1987) original
motivation for the distinction between categorical and coor-
dinate spatial representations, which was based on the idea
that the left hemisphere is specialized for language and the
right is involved in navigation.

Study 1

We have argued that categorical and coordinate spatial
relations are qualitatively distinct, and we hypothesized that
they are encoded by different processing subsystems. Kosslyn
et al. (1990) assumed that these subsystems correspond to
separate neural networks, each of which maps an input (in
this case, a representation of a pair of locations) to an output
(in this case, a representation of a spatial relation). We also
hypothesize that separate networks are used to perform qual-
itatively different types of input/output mappings, such as
when different types of spatial relations representations are
computed.

Accordingly, it is appropriate to use computer simulations
of “neural networks” to investigate whether the two types of
computations are in fact qualitatively distinct. These models
establish mappings—from sets of input stimuli to correct
responses—that appear to share critical features with the
corresponding mappings in the brain. For example, Lehky
and Sejnowski (1988), O’Reilly, Kosslyn, Marsolek, and Cha-
bris (1990), and Zipser and Andersen (1988) all found that
their networks developed an internal organization that mim-
icked properties of neurons that are thought to be involved in
performing the relevant tasks. These networks apparently
extracted specific aspects of the input to achieve the mapping,
and the brain also extracts those properties when performing
the corresponding mapping (for further discussion of this
point, see Rueckl & Kosslyn, 1992). It is possible that a simple
principle, such as gradient descent or distributed representa-
tion, is responsible for such correspondences between the
models and the brain, but we need not press this issue further
here; for our purposes, all that is important is that these
models can be used appropriately to study properties of input/
output mappings performed by the brain.

Although we cannot guarantee that the results of studying
network simulation models necessarily generalize to the brain,
at the very least such results enable us to (a) discover whether

!'Sergent (1991) reported data from normal subjects for four cate-
gorical tasks, three of which involved high stimulus contrast (two
tasks from Experiment 1 and one in Experiment 2) and one of which
involved low stimulus contrast (Experiment 4). She obtained a 4.5-
ms hemispheric difference in one task and differences of less than 1
ms in the other three. Using the Fisher method for combining
independent probabilities discussed by Rosenthal (1984, p. 96), we
estimated the probability of obtaining differences this small or smaller
according to chance. Because some of the F values necessary for this
calculation were missing, we estimated them on the basis of the
available data; the obtained probability of finding differences this
small or smaller was only 0.013, x*(8) = 19.39. This finding leads us
to suspect that Sergent’s findings with high contrast reflect a floor
effect for this sort of processing.
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certain conclusions or findings can follow from specific as-
sumptions and (b) rule out the possibility that certain conclu-
sions or findings cannot follow from specific assumptions.

In the first set of simulations we obtained computational
evidence that at least one categorical relation, above/below,
1s conceptually distinct from the specification of metric loca-
tion, which is a critical component of coordinate representa-
tions.” We ran simulations of the bar-and-dot tasks developed
by Hellige and Michimata (1989) and also used by Kosslyn,
Koenig, et al. (1989, Experiment 3) and Koenig et al. (1990).
In these tasks, subjects saw a short horizontal bar and a dot
and were asked to determine either whether the dot was above
or below the bar (the categorical task) or whether the dot was
within a fixed distance from the bar (the coordinate task). In
our simulations, the categorical task required the network to
judge whether an activated input unit (the dot) was “above”
or “below” a landmark (the bar), which consisted of two
activated input units flanked by one inactivated input unit to
either side. In contrast, the coordinate task required the
network to judge whether or not the activated input unit was
within four units of the landmark. We considered this a
coordinate task because the network had to encode the finest
possible distinctions among locations; in contrast, the above/
below task required grouping the locations into categories.?

We studied these tasks by using the “partition” paradigm
developed by Rueckl, Cave, and Kosslyn (1989), in which the
efficacies of two types of networks on a pair of tasks are
compared; each type performs both tasks simultaneously,
using separate sets of output units. In one type of network,
all of the hidden units are connected to all of the output units,
whereas in the other type, the hidden units are split into two
groups. In a “split” network, one group of hidden units is
connected exclusively to the output units for one task, whereas
the other group is connected exclusively to the output units
for the other task. Consequently, the representations devel-
oped by the hidden units for one input/output mapping
cannot be used for the other, and vice versa. In the “unsplit”
networks, in contrast, the hidden units form a single group
that is fully connected to all the output units for both tasks.*

Following the reasoning of Ruecki et al. (1989), we expected
that if two tasks rely on distinct computations, a split network
would perform the necessary mapping better than would an
unsplit network. The segregation of processing prevents pat-
terns of weights that are useful for accomplishing one input/
output mapping from interfering with those that are useful
for accomplishing the other mapping. However, this effect
may not be evident until the networks have enough hidden
units, because a split network has the inherent disadvantage
of having fewer connections (and consequently fewer weight
space dimensions) than the corresponding unsplit network.
With sufficient numbers of hidden units, the advantage of
separating distinct representations should overcome the dis-
advantage of having fewer resources. Accordingly, we system-
atically varied the number of hidden units.

To establish the input/output mappings, we used the back-
ward error propagation algorithm of Rumelhart, Hinton, and
Williams (1986), as modified by Stornetta and Huberman
(1987). This algorithm is sometimes characterized as a “learn-
ing” procedure, and its behavior is often compared with that

of biological systems that learn (e.g., McClelland & Rumel-
hart, 1986; Rumelhart & McClelland, 1986; Seidenberg &
McClelland, 1989). We do not assume that the kind of learn-
ing performed by the networks has a direct relation to learning
in actual neural networks in the brain. Instead, we use the
difficulty of learning in the models solely as a measure of how
difficult it is to establish a specific input/output mapping. We
treat the amount of error after a fixed number of training
trials as a measure of the difficulty of establishing the mapping
(cf. Rueckl & Kosslyn, 1992). As noted earlier, we are inter-
ested in this type of mapping because it seems to reflect
properties of mappings performed by the brain, but we do
not regard the training process itself as necessarily having any
direct correspondence to neural events. If the mappings are
distinct, we will have evidence that the conceptual distinction
between categorical and coordinate representations is sound,
and will be able to rule out the possibility that the two types
of representations are logically the same and must be pro-
duced by the same computation.

In Part 1 of this study, we compared the ease of establishing
categorical and coordinate (metric) mappings in split and
unsplit networks with various numbers of hidden units. Each
network was trained to establish both types of mappings, and
we observed the amount of error after a fixed number of
trials. In Part 2, we considered the possibility that any advan-
tage shown by split networks might have nothing to do with
the distinct types of representations: Perhaps dividing re-
sources between two tasks is always beneficial, regardless of
the nature of the tasks and the degree of similarity between
the mappings. To address this question, we compared split
and unsplit networks that performed two different variants of
the coordinate task, using the same input patterns and net-
work architectures as in Part 1.

Part 1

Method

Materials. We created standard three-level networks that had 28
input units and 4 output units (2 for each task); we parametrically
varied the number of hidden units, examining the range from 8 to
17. For each size, we created one unsplit network and split networks

2We do not mean to imply that a single subsystem necessarily
computes all categorical spatial relations. For example, “inside/out-
side” and “connected/unconnected” may rely on different sorts of
mappings than does “above/below.” However, we have yet to develop
the theory further in this direction.

3 Although both judgments require a categorization at some level
of processing, the above/below judgment requires only approximate
localization of the dot, and so the right hemisphere’s superior ability
to compute precise location is not relevant, whereas the left hemi-
sphere’s superior ability to categorize should affect performance. In
contrast, although the coordinate task requires categorization to
produce the output, the difficult part of the judgment is to evaluate
the precise distance. Thus the right hemisphere’s abilities should be
more important for good performance in this task.

“ Note that a split network with ¢ hidden units in one partition
and b hidden units in the other partition i1s computationally identical
to two separate networks with g and b hidden units.
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with 3-6 different ratios of hidden units allocated to the categorical
and coordinate tasks. As illustrated in Figure 1, the split networks
were identical to the unsplit networks in all respects except for the
missing connections across the partition.

As illustrated in Figure 2, the input units were conceptualized as
simulating a vertical spatial array. A bar was represented by a four-
unit set in which the top and bottom units were always “off” and the
middle two units were always “on.” This set could appear at any of
five positions: at the center of the array, two units up, two units
down, four units up, or four units down. A dot was represented by a
single activated unit, which could appear at any of eight positions
above and eight positions below the bar. Thus there were 5 X (8 +
8), or 80, input patterns in all. Each input pattern was associated with

Input Hidden Output
Units Units Units
(28) (8-17) (4)

Input Hidden Output
Units Units Units
(28) (8-17) (4)
Figure 1. The architecture of the unsplit (top) and split (bottom)

networks. (Numbers in parentheses indicate the size of the layers;
note that a range of sizes of hidden layers was tested. CAT =
categorical; COO = coordinate.)

Categorical [ |  Coordinate
Judgment {3 Judgment
Easy
Easy OUT ==
— ABOVE Difficult
Difficult IN =
Easy
(BAR) =
_1 Easy
Difficult N & =
— BELOW = Difficult
Easy OuUT =
Easy
L L

%_
L
L

Figure 2. The input to the networks, indicating the bar and possible
locations for the dot. (The judgments were based on the relative
location of the dot and bar, as noted in the figure. The bar could
appear in five distinct locations: at the center and shifted two or four
elements up or down from the center.)

an output pattern, which represented the target values for the four
output units, two of which indicated the categorical judgment and
two of which indicated the coordinate judgment. For the categorical
judgment, one output unit indicated ABOVE and the other BELOW.
For the coordinate judgment, one output unit indicated /N and the
other QUT; the IN response was correct if the dot was within four
elements of the bar, otherwise the OUT response was correct.
Procedure. We tested 18 networks of each type (unsplit and each
ratio of split). Testing consisted of training with the backward error
propagation algorithm for 50 epochs, at which point we measured
the average squared error per output unit per input pattern in the
network. An epoch was defined as a complete run through all 80
stimuli in the training set, followed by a single backward error
propagation pass. The output signals of the units ranged from —0.5
to +0.5 (in accordance with Stornetta & Huberman’s 1987 proce-
dure); for each output unit, a threshold of +0.4 was used, so that
once the output of the unit was within 0.1 of its target, it was
considered to have no error at all. Before each new test, the weights
on the connections in the network were reset to random values
between —0.5 and +0.5. The parameters epsilon (“learning rate”) and
alpha (“momentum factor”) were set to 0.25 and 0.90, respectively.
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Results

The results were analyzed in an analysis of variance (AN-
OVA), with replication (different tests, each using new initial
random weights) as the random effect and average squared
error per output unit per input pattern as the dependent
measure. For each number of hidden units, we compared the
unsplit case to the best performer among the split networks;
different ratios of categorical to coordinate task hidden units
sometimes enabled different-sized networks to perform best.
Figure 3 illustrates the results of this analysis and also indicates
which ratio was optimal at each network size. As expected, if
categorical and coordinate spatial relations computations are
qualitatively distinct, the split networks generally produced
significantly less error (M = 0.039 averaged squared error),
than did the unsplit ones (M = 0.057), F(1, 340) =7.64, p <
.01. Furthermore, error decreased linearly with more hidden
units, F(1, 340) = 5.01, p < .05, for the appropriate contrast,
but there was no interaction between network type and the
number of hidden units (F < 1).

Part 2

Method

Muaterials. To examine the possibility that split networks gener-
ally perform better when two judgments of any type must be made
by a single network, we created split and unsplit networks that
performed two coordinate judgments. The networks evaluated both
whether the dot was within two elements and whether it was within
six elements of the bar; thus the only major change from Part { was
that the output units coded for two distance judgments, rather than
the categorical and original distance judgment. The split networks
were created by partitioning the hidden units in the same way as in
Part 1.

The networks had 10, 12, 14, 16, 18, and 20 hidden units. In order
to reduce the number of models that were tested, half of the hidden
units in all but one size of the split networks were allocated to each
of two tasks; for the 20-hidden-unit size, we also created split networks
with ratios of 5:15, 8:12, 12:8, and 15:5 hidden units. On the basis of
Rueckl et al.’s (1989) results, we expected that allocating insufficient
hidden units to a partition would severely impair the mapping, and
thus we chose to manipulate the ratios of the largest split networks
to consider this potential problem.

Procedure. Ten networks of each type and size were tested ini-
tially; for the 20-hidden-unit size, we tested an additional 6 networks
of each type as well as 16 networks of each of the supplementary
partition ratios. Testing was conducted as in Part 1, except that the
parameter epsilon was set to 0.10 (this modification was necessary
because pilot data indicated that the networks would often reach high
local minima early in testing with the 0.25 epsilon value).

Results

The data were analyzed as in Part 1. For each network size,
we compared the unsplit networks with the even-ratio split
networks in an ANOVA with replication as the random effect.
Figure 4 illustrates the results of this analysis. In sharp contrast
to the results from Part 1, the unsplit networks consistently
produced less error (M = 0.058) than did the split networks
(M =0.092), F(1, 108) = 63.9, p < .001. Error also decreased

0.10

0.08

UNSPLIT
0.06

0.04 7 SPLIT

Average Error

0.02

0,00 L] ) T T T T T T T
8 9 10 11 12 13 14 15 16 17
4/4 5/4 3/7 5/6 5/7 6/7 6/8 6/9 8/8 10/7

Number of Hidden Units
(best case CAT/CQOO ratio)

Figure 3. Results from Part 1 of Study 1, illustrating that the split
networks established the categorical (CAT) and coordinate (COO)
mappings more effectively than the unsplit networks, provided that
a sufficient number of hidden units was available. (The ratios under
the x axis show the numbers of hidden units allocated to the categor-
ical and coordinate tasks, respectively, in the split networks that
performed best in each case; in only one case—the 10 hidden unit
networks—even the most effective split networks performed worse
than the unsplit networks.)

linearly with more hidden units, F(1, 108) = 58.1, p < .001,
for the appropriate contrast. However, the interaction be-
tween network type and the number of hidden units was not
significant, F(5, 108) = 1.73, p > .10.

One could argue that the poor performance of the split
networks was caused by the division of the hidden units into
two equal groups. We ruled out this possibility by examining
the other ratios tested in the 20-hidden-unit networks. The
split networks with 20 hidden units performed worse than the
unsplit networks, regardless of the ratio. The mean error was

0.14 7
1
0.12 1
o
[+]
= J
TRCAL
@
o
g
& 008
2 SPLIT
0.06 1
UNSPLIT
0.04 T T T T T T
10 12 14 16 18 20

Number of Hidden Units

Figure 4. Results of Part 2 of Study 1, illustrating that the unsplit
networks established the mappings more effectively when two coor-
dinate judgments were required.
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0.042 for unsplit networks, in comparison with mean error of
0.062 for a 12:8 split, 0.068 for a 10:10 split, 0.083 for a 8:12
split, 0.085 for a 15:5 split, and 0.089 for a 5:15 split. Four of
the comparisons revealed significant differences according to
¢ tests with the Bonferroni adjustment (adjusted p < .05), and
the other comparison (between unsplit and 12:8 ratio split
networks) approached significance, #(30) = 2.49, adjusted p <
.10.

Discussion

The results of these simulations provide evidence that cat-
egorical and coordinate spatial relations are conceptually dis-
tinct. In Part 1 we found that networks in which the two types
of processing are segregated perform both mappings better
than do otherwise equivalent networks in which the represen-
tations are intermingled in a single set of units and weights.
In Part 2 we found that this result was not merely a conse-
quence of a general advantage for segregating the processing
of any two tasks.

For the split networks in Part 1, the optimal ratio of dividing
the hidden units was usually close to an even split between
the two mappings. This finding may, however, have been an
accident of the particular way in which we set up the tasks
(e.g., the size of the input array, the amount that the bar
moved, and so on), and we do not wish to draw strong
inferences from this result; indeed, Kosslyn, Koenig, et al.
(1989) manipulated the difficulty of discrimination to make
the two kinds of tasks equivalent or either one more difficult
than the other. However, it is fortunate that the two mappings
were about equally difficult in these networks because it
suggests that our results do not somehow reflect an effect of
having a difficult task mixed with an easier one.

In addition, the advantage of the unsplit model in Part 2
cannot be ascribed to the “overlap” in outputs between the
two tasks; whenever the response for the two-element distance
judgment was IN, it must also have been IN for the six-
element judgment and vice versa for the OUT judgment. The
categorical and coordinate tasks in Part 1 overlapped to the
same degree: For half of the input patterns, the output unit
targets had the same pattern for both judgments.

These results do not imply that the human brain necessarily
has evolved to use separate networks to compute the different
types of spatial relations; even though a split network would
be better, the brain may not be optimized in this way (we
return to this issue in the General Discussion section). Thus
these results simply support the contention that the two kinds
of representations are not logically intertwined and need not
rely on the same computation. Testing a simple prediction of
this result would be of interest. If different networks are in
fact used for the two tasks, then repetition priming should
not transfer well between them. If a subject practices making
metric judgments, this practice should prime other judgments
in which the same network is used but not judgments in
which a different network is used.

Study 2

Sergent (1991) suggested that our theory makes a straight-
forward prediction: If separate subsystems encode categorical

and coordinate spatial relations, categorical judgments should
not be influenced by the distance separating the two objects.
However, our theory does not imply that distance affects only
coordinate judgments; many categorical spatial relations rely
on dividing space into discrete bins, and this process may be
more difficult when the boundaries of these regions must be
delineated more precisely. For example, a dot can be classified
as above or below a landmark by observing whether it falls
into one of two pockets of space; although any location within
each bin is treated as equivalent, it may be more difficult to
assign a dot to a category if the bins must be delineated
carefully. Furthermore, even after the regions of space are
delineated, it may be more difficult to assign a dot to a
category if it appears near the boundary. Such center-versus-
periphery effects are found in a wide range of categorization
tasks (e.g., see Smith & Medin, 1983). Thus we do not assume
a pure distinction between “encoding” and “judgment” proc-
esses; interactions between the two may influence the speed
of response.

In this study, we used networks to discover whether our
theory always implies that discriminability has different effects
on the two types of computations or whether distance may in
fact have similar effects on both computations. We compared
the effect of discriminability in individual networks that per-
formed either the categorical or the coordinate mapping (not
both simultaneously, as in Study 1). We tested these special-
ized networks on two complementary subsets of the complete
categorical and coordinate tasks: those stimulus patterns that
Sergent’s (1991) results suggest should be relatively easy and
those that her results suggest should be relatively difficult.

In the categorical task, the easy discriminations were those
in which the dot was far from the bar, and the difficult
discriminations were those in which the dot was near the bar.
In the coordinate task, the easy discriminations were those in
which the dot was far from the criterion distance (defined in
relation to the bar), and difficult judgments were those in
which the dot was close to the criterion distance. This simu-
lation enabled us to address directly the prediction that Ser-
gent inferred.

Method

Materials

The networks were identical to those of Study I, except that we
examined only standard unsplit networks with two output units and
varied the number of hidden units from 6 to 12. Figure 5 illustrates
this network architecture. We chose this range of hidden layer sizes
because it was sufficient to enable the mappings to be achieved but
still show differences if they are not equally easy; when there are too
many hidden units, a “floor effect” may obscure differences in
computational difficulty among mappings.

The categorical judgment task was divided into easy and difficult
conditions. In the easy condition, the dot was farther than four
elements above or below the bar; in the difficult condition, it was
within four elements of the bar. Separate networks were trained in
the easy and difficult conditions, each receiving a set of 40 input
patterns during training. The coordinate judgment task was similarly
divided into easy and difficult conditions. In the easy condition, the
dot was farther than two elements from the criterion distance (which
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was four elements from the bar); in the difficult condition, the dot
was within two elements of the criterion distance. Again, separate
networks were trained to map the easy and difficult conditions; each
received 40 input patterns during training.

Procedure

We tested 25 networks of each size in each categorical condition
and 25 networks of each size in each coordinate condition. Testing
proceeded as in Part 1 of Study 1, except that error was measured
after 30 epochs rather than 50 because the amount of error in the
easy conditions was too low to compare after 50 epochs.

Results

The data were analyzed as in the previous studies. As is
evident in Figure 6, the networks generally performed better
when given the easier discriminations (M = 0.025 error) than
when given the difficult discriminations (M = 0.078), F(1,
532)=190.9, p < .001, and there was no hint of an interaction
between the difficulty of the discrimination and the type of
task (F < 1). In addition, in this study the categorical map-
pings were easier than the coordinate mappings (Ms = 0.043
and 0.060 error), F(1, 532) = 20.9, p < .001, and overall error
decreased linearly with more hidden units, F(1, 532) = 21.1,
p < .001, for the appropriate contrast. No other effects or
interactions approached significance.

Discussion

These findings reveal that subtle discriminations can impair
both kinds of judgments in networks. This result is important
because it is not intuitively clear that a categorical spatial
relation should be harder to establish for stimuli that appear
in a smaller range of positions. The findings of Study 3 will
support our characterization of this sort of categorical spatial
relation as delineating regions of space; hence we can interpret
the results of Study 2 as suggesting that the more difficult it

Input Hidden Output
Units Units Units
(28) (6-12) (2)

Figure 5. The architecture of the networks used in Study 2. (Only
one type of judgment was performed in these models.)
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Figure 6. The results of Study 2, showing that both categorical
(CAT) and coordinate (COO) judgments are affected by the difficulty
of the discrimination (the range of distances).

is to delineate the regions to be related, the more difficult it
is to establish the mapping.

In short, the simulation results of Study 2 show that Ser-
gent’s (1991) finding that humans display a similar effect does
not contradict the distinction between categorical and coor-
dinate representations of spatial relations. It would be of
interest to discover whether the effects of the difficulty of
discrimination on the categorical and coordinate judgments
can dissociate after brain damage; if our interpretation is
correct, some brain-damaged patients should show selective
deficits for difficult categorical discriminations but not diffi-
cult coordinate discriminations, and vice versa for other brain-
damaged patients.

Study 3

The distinction between categorical and coordinate spatial
relations representations was formulated on the basis of an
analysis of the purposes of spatial representations. We hy-
pothesized that coordinate representations play a special role
in action control, whereas categorical representations play a
special role in recognition and identification. In this study we
considered some implications of these ideas in more detail.

Action control depends on precise representation of spatial
location. One way to represent spatial location precisely de-
pends on overlap among rather coarse representations of
location (Hinton, McClelland, & Rumelhart, 1986). This sort
of coarse coding underlies color vision, for example, in which
the three types of cones in the retina have overlapping distri-
butions of sensitivity to different wavelengths of light; it is
this overlap that enables the three types of cones to encode a
wide range of colors. O’Reilly et al. (1990) used network
models to show that this mechanism was indeed an effective
way of encoding metric spatial location.

It is possible that differences in the use of coarse coding can
account for the hemispheric differences in computing the two
types of spatial relations. For instance, the right hemisphere
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may use more input from low-level visual neurons that have
relatively large receptive fields (i.e., that receive input from
relatively large regions of space), which have a large degree of
overlap. These broadly tuned receptive fields would enable
effective coarse coding and could be responsible for the right
hemisphere’s superior ability to encode precise location. In
contrast, the left hemisphere may use more input from low-
level visual neurons that have relatively small receptive fields,
which do not overlap as much. Sets of these receptive fields
would define particular areas, which could be used to specify
regions that are above or below a reference point, left or right
of a reference point, and so on. In the limit, if the receptive
fields did not overlap at all and the categories corresponded
to discrete regions of space, such mappings would be “linearly
separable”-—so straightforward that they could be accom-
plished by direct connections from the input units to the
output units, without a hidden layer (see Minsky & Papert,
1969; Rumelhart et al., 1986).

The idea that differences in receptive field properties may
be at the root of differences in hemispheric specialization for
spatial encoding is intriguing for a number of reasons. First,
it is compatible with Sergent’s (1982) finding that the left
hemisphere encodes smaller, high-spatial-frequency patterns
better than the right, and the right hemisphere encodes larger,
low-spatial-frequency patterns better than the left (see also
Delis, Robertson, & Efron, 1986; Van Kleeck, 1989). Higher
spatial frequencies may be encoded more effectively by
smaller receptive fields; these fields register smaller variations
in space than larger ones. By the same token, lower spatial
frequencies may be encoded more effectively by larger recep-
tive fields (cf. De Valois & De Valois, 1988).

Second, neurons with large receptive fields would be useful
in preattentive processing, which by definition must monitor
large regions of space. Such processing plays a critical role in
controlling actions; one often moves one’s eyes, head, and
body toward a stimulus that suddenly appears, moves, or
changes in some other way. Furthermore, one wants to look
at or reach toward an object with reasonable accuracy, even
if it is seen out of the corner of one’s eye. M. Livingstone
(personal communication, May 1990) has suggested that the
magnocellular ganglia may project preferentially to the right
hemisphere (see Livingstone & Hubel, 1988); these neurons
have relatively large receptive fields and are thought to be
involved in preattentive processing (see also de Schonen &
Mathivet, 1989).

Thus it is of interest that overlapping large receptive fields
not only enable the system to monitor a large area but also
can produce the necessary precision to guide an initial move-
ment, even if a target is seen only out of the corner of one’s
eye. In keeping with this idea, Fisk and Goodale (1988; see
also Goodale, 1988) reported that patients with right hemi-
sphere damage are impaired in the initial phases of reaching
toward a visual target.

These findings must be evaluated in the context of Kitterle,
Christman, and Hellige’s (1990) failure to find any difference
in the sensitivities of the two hemispheres to different spatial
frequencies in a simple detection task. However, Kitterle et
al. did find that high-spatial-frequency gratings were identified
faster and more accurately when they were presented in the

right visual field (and hence were processed initially by the
left hemisphere), whereas in some conditions low-spatial-
frequency gratings were identified more readily when they
were presented in the left visual field (and hence were proc-
essed initially by the right hemisphere). Thus, in keeping with
Sergent’s (1982) ideas, the hemispheric asymmetry cannot be
ascribed to low-level processing; rather, it depends on high-
level encoding and comparison processes.

In short, we hypothesized that the right hemisphere uses
more input than the left from low-level visual neurons that
have large receptive fields. These large receptive fields overlap,
which enables the right hemisphere to encode coordinate
spatial relations better than the left. In contrast, the left
hemisphere uses more input from low-level neurons with
small receptive fields. These receptive fields have less overlap
than do the larger ones, which enables the left hemisphere to
specify some categorical relations by delineating discrete sets
of locations. For example, if an X is “left of” a Y, one may be
able to represent the relation by defining two regions: one for
the left and one for the right.

On this view, if a categorical spatial relation cannot be
computed by defining discrete pockets of space, then the left
hemisphere will not encode that relation better than the right.
This hypothesis is consistent with Sergent’s (1991) failure to
find left-hemisphere superionty in tasks involving spatially
complex stimuli (which had target shapes that could appear
in several noncontiguous regions); these stimuli are difficult
to delineate into specific regions of space that can be used to
categorize stimuli.

These hypotheses rely on subtle distinctions and several
steps of reasoning. Thus, they are ideal candidates for com-
puter simulation modeling, which can show whether we have
merely engaged in so much hand waving or whether our
assumptions can have the consequences that we infer. In this
study, we used network models to investigate these hypotheses
in two ways. In Part 1, we examined the mappings performed
by categorical and coordinate networks by analyzing the
“receptive fields” developed by the hidden units of different
networks; that 1s, for each hidden unit, we examined which
regions of the input array most strongly influenced its level of
activation. The larger the weight on the connection from an
input unit to the hidden unit, the more strongly a dot in that
location will affect the hidden unit; thus the pattern of weights
on the connections to a hidden unit defined its receptive field
(Rueckl et al., 1989; see also Lehky & Sejnowski, 1988;
O’Reilly et al., 1990; Zipser & Andersen, 1988). Specifically,
we tested the possibility that after training proceeds until the
network makes no errors, networks that encode coordinate
spatial relations will have larger receptive fields than will
networks that encode categorical spatial relations. Recall that
when a unit’s output value was within 0.1 of its target value,
it was assigned zero error; otherwise, it was assigned the square
of the deviation from the target value. These error scores were
then summed over output units and training patterns and
divided by the number of each to yield the average error
value. In Part [, we trained the networks until this value was
Z€ero.

In Part 2 of this study, adapting the method of O’Reilly et
al. (1990), we constructed networks that were “hard wired”
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to have large or small receptive fields and considered how
effectively they performed the two kinds of mappings.

Part 1

Method

Materials. Two network models were constructed in this study:
one that performed the categorical mapping and one that performed
the coordinate mapping. These networks were identical to those in
Study 2, except that they had 10 hidden units each, and they mapped
the entire set of stimuli rather than only the easy or the difficult
stimuli (as in Study 2).

Procedure. Testing was conducted as in Study 2, except that we
continued training on each network until the average error had
decreased to zero.

Results

We examined the receptive fields developed by the hidden
units of each network. To test the hypothesis that the coor-
dinate network developed relatively large receptive fields, we
first normalized the weights on the connections between the
input units and the hidden units in the two networks. This
was necessary because the two networks developed different
patterns of weights and had different maximal and minimal
values. We then calculated the radius of a receptive field by
determining the average number of contiguous weights from
each peak weight value down to the peak value of 1/e (cf.
Andersen, Asanuma, Essick, & Siegel, 1990; Zipser & Ander-
sen, 1988). For hidden units with multiple-peak receptive
fields, we calculated the average crest size. The receptive fields
developed by the coordinate network model (average radius
9.7 units) were larger than those developed by the categorical
network model (average radius 4.8 units), #(18) = 2.61, p <
.05.

Discussion

As expected, the networks that performed the coordinate
task spontaneously developed larger receptive fields than did
the networks that performed the categorical task. However,
as O'Reilly et al. (1990) found, these receptive fields often
tended to have complex shapes (see also Zipser & Andersen,
1988). It is possible that the size differences are somehow
related to the various sets of shapes that developed. To ex-
amine the effects of size in isolation, we manipulated this
variable directly in Part 2 of this Study.

Part 2

Method

Materials. We constructed a new set of network models that were
the same as those used in Study 2 except for the following changes.
First, as shown in Figure 7, each network had four layers of units.
The first layer was conceptualized as a “retinal” array, and the 28
units in this layer received the same input patterns as did the 28 input
units in Study 1. The weights on the connections between Layers |
and 2 were not modified during the training procedure; these weights

defined fixed receptive fields of the units in Layer 2. Layers 2, 3, and
4 and the connections among them constituted a three-layer network
that was trained with backward error propagation. Thus, only the
connections between Layers 2 and 3 and between Layers 3 and 4
were modified during the course of training. There were 14 units in
Layer 2, which functioned as the input units for the backward error
propagation procedure, and there were 10 hidden units (Layer 3
units). (Layer 2 units can also be referred to as “input units” because
these were the input units for the backward error propagation pro-
cedure.) As in Study 2, the two output units specified ABOVE or
BELOW for the categorical task and IN or OUT for the coordinate
task.

For half of the networks tested in this study, the Layer 2 units had
small fixed receptive fields; for the other half, the Layer 2 units had
large fixed receptive fields. For each network, 14 receptive fields were
created, one for each Layer 2 unit. All receptive fields were defined
by normalized Gaussian distributions that were determined as fol-
lows. First, standard Gaussian fields were created according to the
formula

o V2D

2na®

Fe(y) =

in which y corresponds to the “vertical” position in Layer 1 and o is
a constant that determines the size of the receptive field. All fields
were then normalized to the range of 0-1. We created small receptive
fields by setting the value of ¢ to 0.71, whereas we created large fields
by setting the value of & to 1.42. Figure 8 illustrates the shape and
the scope of the two types of receptive fields; as is evident, all receptive
field peaks covered two retinal elements. We varied the locations of
the receptive field peaks in Layer 1 by modifying the y value in the
Gaussian formula; as illustrated in the left panel of Figure 9, the 14
receptive field peaks for each network were tessellated across the
retinal array. In all other respects, the networks were constructed like
those used in Part 1 of this study.

Procedure. The networks were trained with the stimulus set used
in Part 1. Input patterns were presented to the “retinal” units of Layer
| in the networks, and the receptive fields modulated the input sent
to Layer 2. The connection weights between Layer 1 and Layer 2
units (Layer 2 receptive fields) were not modified during training.
Thus because the sigmoidal activation function was used to facilitate
the modification of connection weights during training, it was not
used to modulate the flow of activation from Layer 1 to Layer 2 in
this network. Because the sigmoidal activation function was not used,
activation values for Layer 2 units were set to the 0-1 range through
a linear normalization procedure: Activation was first computed as
the sum of the three active connection weights, two from the bar and
one from the dot in the retinal array. The maximal possible activation
for a Layer 2 unit, given the receptive field size and the constraints
of line and dot positioning in the retinal array, was calculated for
each network. This value served as the maximal value in the nor-
malization procedure. A minimal possible activation was calculated
in an analogous manner, and this value served as the minimum in
the normalization procedure.

We tested 10 networks in each of the four conditions, defined by
large or small Layer 2 receptive field sizes and the type of judgment.
In all other respects, testing was the same as in Part 1.

Results

The results are illustrated in Figure 10. As expected, larger
receptive field sizes greatly facilitated the coordinate judg-
ment, whereas smaller sizes were more useful for the categor-
ical judgment, F(1, 36) = 62.4, p < .001, for the interaction
between size of input layer receptive fields and task. Separate
tests revealed that the difference for the coordinate judgment
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Layer 1 Layer 2 Layer 3 Layer 4
Retinal Units Input Units Hidden Units  Output Units
(28) (14 or 28) (10) (2)

Fixed Connection Weights
(between layers 1 and 2)

Figure 7. The architecture of the network used in Part 2 of Study 3. (Receptive fields were defined
over the input units so that only some elements in the input array fed into units in Layer 2. The
connection weights between Layers 1 and 2 were fixed throughout training, whereas the connection
weights between Layers 2 and 3 and between Layers 3 and 4 were modified during training according
to the standard three-layer back-propagation procedure. Fourteen Layer 2 units were used in Study 3,

and 28 were used in Study 4.)

Large RF Size (c = 1.42)

Small RF Size (o = 0.71)

Figure 8. The sizes and profiles of the receptive fields used in Part
2 of Study 3.

(Ms = 0.057 error for smaller and 0.013 error for larger
receptive field networks) was significant, F(1, 36) = 97.7, p <
.001, whereas the corresponding difference for the categorical
judgment (Ms = 0.028 and 0.034 error) was not, F(1, 36) =
2.22, p > .10. Overall, networks with larger receptive fields
performed better than those with smaller receptive fields (Ms
= 0.024 and 0.042 error), F(1, 36) = 34.0, p < .001, but under
these conditions the two types of judgments did not differ
overall (Ms = 0.031 for the categorical task and 0.035 for the
coordinate task), F(1, 36) = 1.60, p > .20.

Discussion

Dovetailing with the results from Part 1 of this study,
networks with fixed large receptive fields performed the co-
ordinate task better than did networks with fixed small recep-
tive field sizes, and there was a tendency for the opposite
pattern in the categorical task. These findings are like those
from the corresponding experiments with human subjects.
Indeed, as noted in the introduction, the left hemisphere has
only a weak (but consistent) advantage for encoding categor-
ical spatial relations.
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Figure 9. The distribution of receptive field peaks in the networks
tested in Part 2 of Study 3 (left) and in Study 4 (right). (For mixed-
size networks in Study 4, “medium” peak locations refer to the 14
peak locations for intermediate-sized receptive fields, “smaller” to the
7 peak locations for receptive fields that had relatively smaller sizes,
and “larger” to the 7 peak locations for receptive fields that had
relatively larger sizes. In the homogeneous networks, peak locations
for receptive fields—all of which were the same size—were also
distributed across these 28 locations.)

Thus these results provide additional support for the con-
tention that categorical and coordinate spatial relations rep-
resentations are conceptually distinct. Furthermore, they hint
at one possible reason why the hemispheres are specialized
for encoding the different types of representations. A predic-
tion of these results is that the left-hemisphere advantage for
categorical spatial relations should be present only when the
relation can be computed by delineating regions of space.
Thus any manipulation that makes this computation more
difficult should eliminate this effect.

Study 4

The results of Study 3 may provide an insight into Sergent’s
(1991) finding that hemispheric differences do not arise when
the stimuli have high contrast. In Study 4, we examined
networks with narrow or wide ranges of receptive field sizes
in the input units. If the hemispheres differ in their sensitivities
to input from units with different-sized receptive fields, then
any differences in the sizes of the receptive fields of input
units may be obliterated if high contrast enables a more varied
set of input units to contribute to the computation.

Kosslyn (1987) and Kosslyn, Koenig, et al. (1989) assumed
that the hemispheres differ in their relative efficacy at encod-
ing the two types of spatial relations; they did not intend to
claim that the hemispheres were exclusively specialized for
the different types of encoding. Indeed, Kosslyn, Sokolov,
and Chen (1989) simulated Kosslyn’s (1987) “snowball proc-
ess,” in which the relative hemispheric specialization of var-
ious subsystems develops gradually over time; at the heart of
this model is the idea that the two hemispheres differ in the
relative efficacy of individual subsystems. It is unfortunate
that we did not state this assumption clearly, as noted by
Sergent (1991); this assumption is important because it leads
us to expect that the difference in inputs to the two hemi-
spheres is one of degree. Given the previous simulation results,
we might expect the left hemisphere to use more input from
neurons with relatively small receptive fields and the right
hemisphere to use more input from neurons with relatively
large receptive fields, but we expect a distribution of inputs
from neurons with different receptive field sizes in both
hemispheres.

This idea suggests that the “modulation transfer functions”
(see Kaufman, 1974) of high-level visual areas may differ in
the two hemispheres. We are not considering the modulation
transfer functions of low-level areas involved in detection, but
rather those of higher areas involved in memory and compar-
ison. Figure 11 illustrates this hypothesis: The modulation
transfer functions of the high-level areas are slightly shifted,
so that the peak sensitivity for the right hemisphere is at a
lower spatial frequency, which could reflect its use of more
input from larger receptive fields (and vice versa for the left
hemisphere). At low contrast, the performances of the two
hemispheres would be well separated, as indicated by the
relatively small amount of overlap at the top horizontal dotted
line. This difference could arise because the hemispheres differ
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Figure 10. Results of Part 2 of Study 3, showing that the difficulty
of establishing the two types of mappings depended on the relative
sizes of the receptive fields (RFs). (Receptive field sizes are indicated
by ¢ values for the Gaussian field equation. CAT = categorical; COO
= coordinate.)
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Figure 11. A hypothesized difference between identification mod-

ulation transfer functions of high-level visual areas in the left and
right hemispheres. (Scales are logarithmic.)

in the degree to which they use inputs from units with
different-sized receptive fields. However, at high contrast
(when less sensitivity is required, as indicated by the bottom
dotted line), both hemispheres use input from units with a
wide range of receptive field sizes; hence the two distributions
have a large amount of overlap, and the performance of the
two hemispheres would not be well separated.

This idea might explain Sergent’s (1991) finding that hem-
ispheric differences between categorical and coordinate proc-
essing occur only when the stimuli are relatively degraded
(i.e., are presented with low contrast). Accordingly, we decided
to explore this hypothesis with another set of simulated net-
works. In these models, we again vanied the sizes of the
receptive fields of the inputs but now compared networks in
which a narrow range of receptive field sizes was used (cor-
responding to low contrast) with those in which a wider range
of receptive field sizes was used (corresponding to high con-
trast).

In addition, we compared this hypothesis with a simpler
one: Perhaps increased contrast does not recruit additional
neurons that increase the range of receptive field sizes; rather,
it eliminates hemispheric differences simply because more of
the same type of low-level neurons are stimulated over thresh-
old. Even if neurons have small receptive fields, enough
overlapping outputs would enable coarse coding to be used
effectively even in the left hemisphere.

Thus we compared two sets of networks: ones in which
greater contrast was assumed to produce outputs from a wide
range of sizes of receptive fields (“mixed” receptive-field-size
networks) and ones in which greater contrast was assumed
simply to produce more input from the lower visual areas
(“homogeneous” receptive-field-size networks). If the effect of
receptive field size found in Study 3 were eliminated in mixed
networks only, the first hypothesis would be supported; if this
effect were eliminated in homogeneous networks, the second
hypothesis would be supported.

Method

Materials

These networks differed from those used in Study 3 in only two
ways: First, Layer 2 was composed of 28 units for all networks,
instead of the 14 used before. Second, half of the networks had Layer
2 units with receptive fields of mixed sizes within a single network,
whereas the other half had Layer 2 units with receptive fields of one
S1Z¢.

Half of the networks with homogeneous Layer 2 receptive field
sizes were created so that all the units in Layer 2 had small receptive
fields (¢ = 0.71) and half so that all of these units had large receptive
fields (o = 1.42). These networks were designated fomogeneous/small
and homogeneous/large networks, respectively. Half of the networks
with mixed Layer 2 receptive field sizes were created so that 14 of the
Layer 2 units had small receptive fields (¢ = 0.71), 7 had even smaller
receptive fields (¢ = 0.36), and the other 7 had large receptive fields
(¢ = 1.42). These networks were designated mixed/small networks.
The other half of the networks with mixed Layer 2 receptive field
sizes were created so that 14 of the Layer 2 units had large receptive
fields (¢ = 1.42), 7 had even larger receptive fields (¢ = 2.84), and 7
had small receptive fields (¢ = 0.71). These networks were designated
mixed/large networks.

The receptive field peak locations for the 28 Layer 2 units in these
networks were tessellated across the retinal array, as illustrated in the
right panel of Figure 9. For mixed/small and mixed/large networks,
all three receptive field sizes were evenly distributed across the retinal
array; Figure 9 also indicates the peak locations for the three receptive
field sizes.

Procedure

The procedure was the same as in Study 3, except that eight
conditions were tested; we produced these conditions by orthogonally
combining categorical and coordinate mappings with homogeneous/
small, homogeneous/large, mixed/small, and mixed/large networks.
Ten networks were tested in each condition.

Results

The results from this study are shown in Figure 12. To
investigate whether mixed or homogeneous networks more
accurately paralleled the behavioral findings, we analyzed the
results from the two types of networks in separate ANOVAs.
The mixed networks performed the mappings differently
when they had different-sized receptive fields, as indicated by
an interaction between receptive field size and task, F(1, 36)
= 5.37, p < .05. Specifically, mixed networks performed the
categorical task better when they had a majority of small
receptive fields (M = 0.0116 error) than when they had a
majority of large fields (M = 0.0179 error), F(1, 36) = 8.98,
p < .01, but performed the coordinate tasks equally well with
both receptive field sizes (Ms = 0.0051 and 0.0045 for small
and large receptive field networks), F < 1. In addition, the
mixed networks generally performed the coordinate task bet-
ter than the categorical one (Ms = 0.0048 and 0.0148), F(1,
36) = 45.1, p < .001. These findings thus do not mirror
Sergent’s (1991) behavioral results, which did not reveal a
difference in the categorical task with high contrast.
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Figure 12.  Results of Study 4, showing that adding inputs eliminated the advantage of large receptive
fields (RFs) for accomplishing the coordinate mapping. (Moreover, if additional inputs with same-sized
receptive fields were added, small receptive fields no longer allowed the network to establish the
categorical mapping more easily than did large receptive fields. CAT = categorical; COO = coordinate.)

In contrast, homogeneous networks did produce the same
pattern of results found in Sergent’s experiments with high
contrast. In these networks, there was no interaction between
receptive field size and task, F(1, 36) = 1.14, p > .25. In
addition, the categorical task was performed equally well with
small and large receptive fields (Ms = 0.0135 and 0.0159),
K(1, 36) = 1.55, p > .20, as was the coordinate task (Ms =
0.0036 and 0.0030), F < 1. Finally, these networks performed
the coordinate task better than the categorical task (Ms =
0.0033 and 0.0147), F(1, 36) = 68.5, p < .001.

Discussion

We were best able to model Sergent’s (1991) findings if we
simply assumed that more contrast leads to more output from
low-level neurons. Adding inputs to the network effectively
eliminated the advantage of large receptive fields for encoding
precise location; the networks apparently used coarse coding
effectively, even if the receptive fields were relatively small.
This observation makes sense when one considers that coarse
coding is an effective strategy only when both sufficient and
systematic (but not excessive) overlap exists in the distribution
of response profiles. (It has previously been demonstrated that
overlap in receptive fields must be staggered in order to encode
precise locations; O’Rellly et al., 1990; see also Ballard, 1986.)

Presenting stimuli with higher levels of contrast probably
caused more units with overlapping receptive fields to enter
the distribution. Therefore, if the added receptive fields rep-
resent areas distributed fairly evenly across the input space, a

higher and more effective degree of overlap is obtained even
among relatively small receptive fields.

General Discussion

Our results provide additional support for the conceptual
distinction between categorical and coordinate representa-
tions of spatial relations. We not only found that at least in
some circumstances different computations encode the two
kinds of spatial relations, and hence they are not logically
bound together, but also described a simple mechanism that
can explain why coordinate representations are computed
more effectively in the right cerebral hemisphere and categor-
ical representations are computed more effectively in the left
cerebral hemisphere, as well as why these hemispheric differ-
ences are not evident when stimuli are presented with high
contrast,

Specifically, our networks evaluated whether a dot was
above or below a line or whether a dot was within four
elements of a line; thus they mimicked the categorical and
coordinate tasks developed by Hellige and Michimata (1989).
We found that the two judgments were performed more
effectively in a neural network model when the hidden units
were segregated into two separate subsystems, whereby one
provided input to the categorical judgment output units and
the other provided input to the coordinate judgment output
units. When a single, unsplit network was used to perform
both mappings, there apparently was interference between the
different types of internal representations needed to accom-
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plish the two mappings. In contrast, the reverse pattern was
found when a network made two metric judgments; there,
common representations could be used for both mappings,
and dividing the networks made it more difficult to establish
the mappings.

In addition, we found that both sorts of mappings were
more difficult when finer discriminations were required. Ser-
gent (1991) took the corresponding finding with human sub-
jects as evidence against the distinction; our results suggest
that her findings do not contradict the contention that the
two mappings are qualitatively distinct. Our most general
point is that a subset of shared properties does not imply that
entities are exactly the same; different species of mammals,
for example, share many properties (such as warm blood,
hair, and so on), but other characteristics individuate them.

Furthermore, we found that the coordinate mapping was
easier if the input was filtered through larger overlapping
receptive fields, whereas the categorical mapping was easier if
the input was filtered through smaller receptive fields. The
idea that the right hemisphere monitors large receptive fields
is consistent with its possible role in encoding locations to
initiate an action.

Finally, the network models suggested an account of Ser-
gent’s (1991) finding that contrast alters the observed pattern
of lateralization. When a relatively large number of units
contributed input to a network, as may occur with high-
contrast stimuli, the sizes of their receptive fields did not affect
performance.

These findings suggest that the distinction between categor-
ical and coordinate spatial relations encoding is both concep-
tually sound and computationally plausible. In some ways,
our conceptualization of this distinction is now closer to
Sergent’s (1991) interpretation of her results than to the
original formulation of Kosslyn (1987), and we are grateful
to Sergent for leading us to characterize the distinction more
rigorously. However, Sergent accounted for the right-hemi-
sphere advantage in the distance task by assuming that it is
generally superior at making efficient use of lower quality
information and apparently assumed that there is no hemi-
spheric difference in the above/below task because precise
location need not be encoded or because high-quality infor-
mation is not needed to compute this relation. This interpre-
tation fails to account for the fact that people judge categorical
relations better when the stimulus is presented initially to the
left hemisphere than when it is presented initially to the right
hemisphere (as we reviewed in the introduction). Further-
more, patients with Gerstmann’s syndrome cannot judge left
from right, and these patients typically have damage to the
left parietal lobe (e.g., Levine, Mani, & Calvanio, 1988).

Sergent (1991) argued against the idea that each hemisphere
computes only one type of representation (either categorical
or coordinate). Although we apparently have not been clear
about our position previously, we have always agreed with
this view; we assume that both hemispheres can compute
both types of spatial relations, but not equally effectively.
Indeed, one of the reasons why we find neural network
simulation models attractive is that they are consistent with
five principles that Kosslyn and Koenig (in press) inferred

about actual neural computation in the brain, one of which
posits that the brain has only “weak modularity.” We ex-
ploited these five principles in the following way.

First, division of labor: Tt is more efficient for separate
networks to perform different types of mappings. Because the
same patterns of weights on connections are used to accom-
plish different input/output mappings, different types of map-
pings interfere with each other. This principle does not, how-
ever, imply that the brain always does things in the most
efficient way. Nevertheless, we assume that basic perceptual/
motor processing, such as we studied, has become relatively
efficient through the course of evolution; hence it is plausible
that these sorts of processing often are performed efficiently.
Second, weak modularity: The subsystems of the brain are
not like electronic parts, with completely discrete functions.
Rather, there is some overlap in the operation of the different
components. For example, neurons in many visual areas are
sensitive to more than one stimulus dimension (e.g., Van
Essen, 1985). The fact that both categorical and coordinate
mappings are sensitive to the distances between objects being
judged may suggest that the mappings include a common
underlying component (but this does not imply that the
mappings are the same any more than the fact that dogs and
bears have fur means that they are the same). Third, constraint
satisfaction: Precise information is computed by satisfying a
variety of weak constraints simultaneously. Coarse coding is
one mechanism that carries out such computations. Further-
more, we assume that categorical spatial relations are encoded
in conjunction with information about the identity of parts
during object identification, and it is the combination of the
two sorts of information that places strong constraints on
what object is being viewed (see Kosslyn et al., 1990). Fourth,
concurrent processing. We do not expect the system to “de-
cide” which kind of representation to compute; rather, we
expect it simply to compute whatever it can on the basis of
the input. If so, separate subsystems operating in parallel may
often be used to compute independent mappings; our exper-
iments suggest that this would be a feasible arrangement for
computing the two kinds of spatial relations representations.
Finally, opportunism: Mechanisms that originally evolved for
one purpose may be recruited later for another (cf. Gould &
Lewontin, 1978). We have suggested that hemispheric differ-
ences in spatial relations encoding may have arisen because
of mechanisms used in preattentive processing. Once the
receptive field differences were present for this purpose, they
could be exploited by processes that perform other tasks.

It is important to note that we have used network models
in an unusual way in these studies; we are interested in them
solely in terms of how well they perform specific input/output
mappings. We were careful to design the tasks given to the
networks to parallel the important features of the tasks given
to humans, and we used the models to study the difficulty of
establishing the necessary input/output mappings under dif-
ferent conditions. We made minimal assumptions about the
psychological reality of the details of the models, and we did
not use weights as parameter estimates or the like (see Mas-
saro, 1988, for problems with some more common uses of
such models). Rather, we argue that differences in the ease of
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establishing input/output mappings in these networks are of
interest because these mappings capture—at a rather abstract
level—certain aspects of corresponding mappings in the brain.
The results provide evidence that the two kinds of mappings
are distinct within these kinds of networks and enable us to
formulate a hypothesis that is sufficient to account for how
the hemispheric differences arise.

We have not shown that the same patterns of results would
occur with all possible parameter values in the models. For
our purposes, however, this is not a very interesting question;
it is likely that some parameter settings would allow networks
to perform all of the tasks very easily (displaying a floor effect,
of the sort seen in Study 4), whereas others (e.g., including
only a couple of hidden units) would hamstring them in all
of the tasks. The fact that we found selective differences in
performance under any conditions is evidence that the map-
pings are distinct. A critical part of this logic is that we were
able to demonstrate not only simple main effects, in which
one network configuration was better than another, but also
interactions: Depending on the precise task, one network
performed better or worse than another. Hence the perform-
ance of the network could not be ascribed to a combination
of parameter settings that simply made it effective or ineffec-
tive in general.

Intuitively, it is easy to question whether the distinction
between categorical and coordinate spatial relations is coher-
ent, let alone plausible. In fact, Kosslyn (1987) and Kosslyn,
Koenig, et al. (1989) characterized the distinction slightly
differently than we did, partly because they had not yet had
to grapple with the problems of implementing simulation
models and interpreting the results. It is clear that models
such as these are a useful supplement to intuition, providing
further bases for formulating and evaluating hypotheses about
human information processing.
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