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Since Binet (1893), psychologists have studied the game of chess to learn about

fundamental properties of the human mind. Charness (1992) chronicled the rising

in
uence on cognitive science of the seminal work of De Groot (e.g., 1965) and Chase

and Simon (1973a, 1973b). The popularity of chess as a task domain for research on

expertise stems from several factors, including its well-de�ned rules, susceptibility to

symbolic representation and computer simulation, historical reputation as an unpar-

alleled arena of pure thought, and its remarkable \cognitive �t" to the capacities of

the human mind (\an hour to learn, a lifetime to master").

However, chess stands out also because of its rating system (Elo, 1986), which

assigns to each player in o�cial competitions a numerical value representing his \av-

erage strength." The larger the rating di�erence between two players, the better the

higher-rated player is expected to score in a match between them. This relatively

objective system allows researchers to select and group subjects with considerable

knowledge of their abilities and the relation between their abilities and those of the

larger population. There are numerous examples of this technique; to cite one, Chab-

ris and Hamilton (1992), in a study of hemispheric di�erences in chess perception,

restricted their sample to 16 players who were current or former holders of the \Na-

tional Master" title, then de�ned by a rating of 2200 on the U.S. Chess Federation

scale (the top 2.5% of competitive players in the country).

Charness and Gerchak (1996; hereafter CG) and Gobet and Simon (1996; GS)

use chess rating data in new and intriguing ways to address questions about group

di�erences and the tradeo� between search and knowledge in chess ability. They rely

on ratings not merely to group subjects but to provide the actual data for analysis.

Their approaches are valuable, but they each omit the crucial step of estimating the

variability of their results [Footnote 1]. In this article we discuss how to perform this
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analysis and the signi�cant consequences for the CG and GS conclusions of accounting

for this variability.

CG focus on the relationship between the size of a sample (e.g., of chess players)

and its expected maximum value. They correctly argue that if two disjoint samples,

one much larger than the other, are drawn from the same population, the larger sample

will likely produce a larger maximum. As an example of this observation, CG exam-

ine the maximum playing strengths of di�erent samples of chess players (men versus

women, the United States versus the Soviet Union) and show that their \MILL7"

approximation (i.e., for normal populations, the expected sample maximum is approx-

imately linear in the logarithm [base 10] of the sample size with slope 0.7 standard

deviations) seems to describe the observed di�erences. They conclude by suggesting

that the maxima of samples be compared to a null hypothesis of the MILL7 expec-

ted values before generating new hypotheses (e.g., sex di�erences in cognitive ability,

cultural di�erences in chess training) to explain why samples are di�erent.

However, CG do not consider how to account for the variability of the sample

maximum. As we describe below, the variability of a sample maximum is large enough

that if a true di�erence exists between, say, the population mean ratings of men and

women, this would not likely be detected by comparing the women's maximum rating

and the men's maximum rating adjusted by MILL7 (and appropriately incorporating

the variability of the sample maxima). Thus, while di�erences in the maximum chess

rating between two di�erent samples may be explainable by di�erential rates of parti-

cipation, they will tell us very little (with any certainty) about the average di�erences

between men and women, which may be a question of greater scienti�c interest.

Suppose in a sample of n observations from a continuous probability distribution
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F (with density f), we wish to �nd the approximate distribution of the maximum.

Instead of using the MILL7 approximation for the expected maximum of a sample, we

can use an asymptotic normal approximation to the distribution of the t-th fractile,

Xt, where we set t = (n � 1)=n for the maximum of a sample. The approximate

distribution of Xt is given by

Xt � N(F�1(t);
t(1� t)

n[f(F�1(t))]2
); (1)

where F�1(t) is the value corresponding to the t-th fractile of the distribution. This

result can be found in advanced textbooks in statistics, such as Lehmann (1983) and

Bickel and Doksum (1977). For most common distributions (e.g., Normal, Student's

t, �2, Gamma), the value of F�1(t) can be calculated numerically using standard

statistical software packages, for example, S-Plus (Statistical Sciences, Inc., 1995).

As an example of its application, consider CG's calculation (p. 49) of the ex-

pected rating for the best player in the Soviet Union in 1982. The authors assume

the distribution of players' ratings follows N(1550; 2502), and calculate an estimated

maximum for a sample of 4,000,000 to be 2640. Numerically approximating (1)

with t = 3; 999; 999=4; 000; 000 and F corresponding to N(1550; 2502), we calculate

that F�1(t) = 2807, and that the sample maximum is approximately distributed as

N(2807; 482).

Several points are worthy of mention. First, our estimated expected maximum

(2807) di�ers substantially from CG's value of 2640. Regardless of the variability of

the sample maximum, this di�erence points out the large potential for error in the

approximations used (ours as well). Secondly, the (asymptotic) standard deviation of

the sample maximum with n = 4; 000; 000 is about 48. Compared to the standard

deviation of the sample mean, which in this example would be 0.125, the standard
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deviation of the sample maximum is 384 times as large. That is, for repeated large

samples, the maximumwill be expected to vary by as much as 300{400 times as much

as the sample mean will be expected to vary.

This large variability has a profound impact on statistical inference. Suppose,

in the spirit of the preceding example, that we observe a maximum rating of 2720

in a sample of 4,000,000 with ratings that follow N(1550; 2502). In an independent

second sample of 100,000 players drawn from N(�; 2502), with � unknown, suppose

we observe a maximum rating of 2730. At �rst glance, it would appear obvious that

the second sample must have been drawn from a normal population with a higher

mean � than 1550 because not only was the maximum in the second sample higher,

but that the sample maximum was based on a 40 times smaller sample (in smaller

samples, according to the MILL7 approximation, one would not expect the maximum

to be as large). But computing approximate 95% prediction intervals for the maximum

from each sample demonstrates that this conclusion is not warranted. For the �rst

population, the approximate 95% prediction interval is 2807�1:96(48) = (2713; 2901).

Assuming � = 1550 for the second population, the sample maximum can be computed

to come fromN(2616; 632) according to (1). So an approximate 95% prediction interval

for the sample maximum is 2616� 1:96(63) = (2493; 2739). In each case, the sample

maxima fall in the prediction intervals, so they are consistent with the population

distributions being identical. This demonstrates that using the sample maximum is

not a powerful test statistic for detecting group di�erences.

If one's goal is to detect average di�erences among groups, one should choose

procedures that are based on less variable statistics than the sample maximum. An

obvious candidate is the sample mean, which is considerably less variable than the

sample maximum. Even using lower order statistics, such as the top percentiles of



Chess Ratings as Data in Psychological Research 6

the sample, would reduce the variability appreciably relative to the sample maximum:

with n = 4; 000; 000 values drawn from N(1550; 2502), the standard deviation of the

top one-tenth percentile (according to (1)) can be computed to be 1.17. The standard

deviation of the top percentile is 0.467. The standard deviation of the top tenth

percentile is 0.214. While obtaining such data is often more di�cult than �nding the

sample maximum, doing so greatly reduces the variability. Another reason to avoid

the sample maximum for carrying out inference is that the maximum is very sensitive

to parametric assumptions, whereas a statistic like the sample mean is much less so

(particularly for symmetric distributions). Making an inference about the center of a

distribution using the sample maximumwill result in a di�erent conclusion depending

on whether the data is assumed to be, say, normal versus t-distributed on small degrees

of freedom, whereas using the sample mean will provide identical conclusions. This

is an important issue to consider for measuring chess playing strength, because the

distribution of chess ratings is not necessarily normal (Glickman, 1995).

GS carry out a study to determine whether recognition processes in chess are

more important than planning processes in determining playing strength. To do so,

they examine a sample of recent game results of the current world chess champion,

Garry Kasparov, under conditions where he had less time to think than his opponents.

From the 56 game outcomes, GS estimate that Kasparov's strength was not notably

lower than his playing strength under normal tournament time limits. They therefore

conclude that recognition processes, which occur nearly instantaneously, probably

dominate planning and look-ahead processes, because otherwise Kasparov would have

performed much worse than he did.

Like CG, GS do not account for the variability in their estimate of Kasparov's

strength under restricted time limits, and therefore cannot describe the uncertainty
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of their conclusions. Furthermore, the Elo (1986) linear approximation formula that

GS use to compute an estimate of Kasparov's strength has poor statistical properties

(e.g., it is not a consistent estimator), and is only intended as a simple approximation

to more principled estimators, so it should not be relied upon. We analyzed their

data using maximum likelihood estimation to obtain a more principled estimate of

Kasparov's average playing strength, and calculate its standard error.

The probability model used in the Elo rating system is commonly known as the

Bradley-Terry model (Bradley & Terry, 1952) for paired comparisons. The Elo system

uses a reparametrization of the original Bradley-Terry model as follows. Suppose �i

and �j are the true unknown ratings of players i and j. Then according to the Elo

version, the probability that player i scores sij , where sij = 1 if player i wins and

sij = 0 if player i loses, is given by

Pr(sij = s) =
(10(�i��j)=400)s

1 + 10(�i��j)=400
; (2)

The likelihood, L(�js1; : : : ; sn), over n games is therefore

L(�js1; : : : ; sn) =
nY

k=1

(10(���k)=400)sk

1 + 10(���k )=400
(3)

where the k-th factor in the product is the result of the k-th opponent with rating �k.

(When a draw occurs against opponent k, we can set sk = 0:5 in the likelihood. This

corresponds to information worth half a win and half a loss.) To perform maximum

likelihood estimation from a set of collection of game outcomes, one can maximize

the expression in (3) using the Newton-Raphson algorithm, a standard iterative nu-

merical procedure, substituting the estimated opponents' Elo ratings for the �k. The

algorithm also provides an asymptotic standard deviation of the rating estimate, which

is the negative reciprocal of the second derivative of L(�js1; : : : ; sk) evaluated at the

maximum.
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After correcting a minor error in the GS data set (Kasparov's score in the United

States junior team match was actually 0.5 worse than reported by GS), we carried out

this analysis on the 56 game outcomes. The maximum likelihood estimate is 2594 with

a standard error of 53.6. Thus, an approximate 95% con�dence interval for Kasparov's

true rating over the 56 games is 2594 � 1:96(53:6) = (2489; 2699). This interval

estimate suggests a conclusion di�erent from the one reached by GS, who obtain a

point estimate of 2646. While this analysis shows that Kasparov played worse than his

rating range of 2700{2790 during the same time period (July 1985 { July 1992) would

indicate, it also shows that there is not enough information to conclusively determine

how much worse. For example, the con�dence interval suggests that Kasparov may be

playing at a rating level of 200 or more points below his normal tournament strength

[Footnote 2].

The apparent objectivity of Elo-type ratings when compared to other measures

of relative ability (peer ratings, impact analyses, prize winnings, etc.) can mask

the fact that they are still imperfect measures of underlying parameters, and the

consequence that conclusions derived from them will be subject to variability. The

articles reviewed here make innovative methodological contributions to the study of

chess ability and expertise in general. We have tried to re�ne their approaches by

estimating the variability of their conclusions { a step that all researchers using chess

ratings as data should be careful to remember.
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Footnotes

1. Although our focus in this article is on the variability inherent in estimates made

from chess rating data, one of the most overlooked features of Elo-type ratings is that

they are themselves estimates of unknown strength or ability parameters, and are

therefore as much subject to variability as any other measures of human performance.

Glickman (1995, 1996) discusses how to measure the uncertainty of ratings and incor-

porate that information into rating calculations to increase accuracy and predictive

power. CG and GS do not consider the variability associated with their raw data; in-

deed, it would be di�cult for them to do so, given that the standard Elo rating system

ignores the issue. Fortunately, their conclusions would not be signi�cantly altered by

accounting for reasonable estimates of rating variability. However, future researchers

should consider this factor carefully when drawing inferences from rating data.

2. A rating di�erence of 200 points is signi�cant because it predicts a 3-1 victory

margin for the superior player in a match (e.g., Elo, 1986), which would be considered

a decisive result. (For example, all recent world championship matches have been

decided by smaller margins.) Thus, if Kasparov lost 200 points of strength under

clock-simultaneous conditions, it would be fair to conclude that the lost thinking time

a�ected his play signi�cantly. It is interesting to note that research in computer chess

(e.g., Thompson, 1982; Hsu, Anantharaman, Campbell, and Nowatzyck, 1990) has

equated a 200-point advantage to the approximate bene�t derived from searching one

ply (one move for one side) deeper in the game tree, and that this additional search

typically increases the time spent by a factor of 4{6 { the same time constraints

imposed on Kasparov. So the GS study also o�ers some support for the idea that

forward search is crucial to chess skill, though again the variability precludes any

de�nitive judgments.


